The Operational Matrix Formulation of The Jacobi Tau Approximation For Space Fractional Diffusion Equation
dc.authorid | Doha, Eid/0000-0002-7781-6871 | |
dc.authorscopusid | 6602467804 | |
dc.authorscopusid | 14319102000 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 38861466200 | |
dc.authorwosid | Ezz-Eldien, Samer/Agk-8059-2022 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Bhrawy, Ali/D-4745-2012 | |
dc.authorwosid | Doha, Eid/L-1723-2019 | |
dc.contributor.author | Doha, Eid H. | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Bhrawy, Ali H. | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Ezz-Eldien, Samer S. | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2020-04-29T22:49:49Z | |
dc.date.available | 2020-04-29T22:49:49Z | |
dc.date.issued | 2014 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Doha, Eid H.] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt; [Bhrawy, Ali H.] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia; [Bhrawy, Ali H.] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt; [Baleanu, Dumitru] King Abdulaziz Univ, Dept Chem & Mat Engn, Fac Engn, Jeddah, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Ezz-Eldien, Samer S.] Modern Acad, Inst Informat Technol, Dept Basic Sci, Cairo, Egypt | en_US |
dc.description | Doha, Eid/0000-0002-7781-6871 | en_US |
dc.description.abstract | In this article, an accurate and efficient numerical method is presented for solving the space-fractional order diffusion equation (SFDE). Jacobi polynomials are used to approximate the solution of the equation as a base of the tau spectral method which is based on the Jacobi operational matrices of fractional derivative and integration. The main advantage of this method is based upon reducing the nonlinear partial differential equation into a system of algebraic equations in the expansion coefficient of the solution. In order to test the accuracy and efficiency of our method, the solutions of the examples presented are introduced in the form of tables to make a comparison with those obtained by other methods and with the exact solutions easy. | en_US |
dc.description.publishedMonth | 8 | |
dc.description.sponsorship | Deanship of Scientific Research DSR, King Abdulaziz University, Jeddah; DSR | en_US |
dc.description.sponsorship | This paper was funded by the Deanship of Scientific Research DSR, King Abdulaziz University, Jeddah. The authors, therefore, acknowledge with thanks DSR technical and financial support. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1186/1687-1847-2014-231 | |
dc.identifier.issn | 1687-1847 | |
dc.identifier.scopus | 2-s2.0-84934937716 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.uri | https://doi.org/10.1186/1687-1847-2014-231 | |
dc.identifier.wos | WOS:000342158400003 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 42 | |
dc.subject | Multi-Term Fractional Differential Equations | en_US |
dc.subject | Fractional Diffusion Equations | en_US |
dc.subject | Tau Method | en_US |
dc.subject | Shifted Jacobi Polynomials | en_US |
dc.subject | Operational Matrix | en_US |
dc.subject | Caputo Derivative | en_US |
dc.title | The Operational Matrix Formulation of The Jacobi Tau Approximation For Space Fractional Diffusion Equation | tr_TR |
dc.title | The Operational Matrix Formulation of the Jacobi Tau Approximation for Space Fractional Diffusion Equation | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 32 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |