Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Adaptive Estimation of Autoregressive Models Under Long-Tailed Symmetric Distribution

dc.contributor.authorYengür, Begüm
dc.contributor.authorBayrak, Özlem Türker
dc.contributor.authorDener Akkaya, Ayşen
dc.contributor.authorID56416tr_TR
dc.date.accessioned2020-05-08T11:41:56Z
dc.date.available2020-05-08T11:41:56Z
dc.date.issued2019
dc.departmentÇankaya Üniversitesi, İktisadi İdari Bilimler Fakültesi, İstatistik Bilim Dalıen_US
dc.description.abstractIn this paper, we consider the autoregressive models where the error term is non-normal; specifically belongs to a long-tailed symmetric distribution family since it is more relevant in practice than the normal distribution. It is known that least squares (LS) estimators are neither efficient nor robust under non-normality and maximum likelihood (ML) estimators cannot be obtained explicitly and require a numerical solution which might be problematic. In recent years, modified maximum likelihood (MML) estimation is developed to overcome these difficulties. However, this method requires that the shape parameter is known which is not realistic in machine data processing. Therefore, we use adaptive modified maximum likelihood (AMML) technique which combines MML with Huber’s estimation procedure so that the shape parameter is also estimated. After derivation of the AMML estimators, their efficiency and robustness properties are discussed through a simulation study and compared with MML and LS estimators.en_US
dc.description.publishedMonth7
dc.identifier.citationYentür, B.; Bayrak, Ö.T.; Akkaya, A.D. (2019). "Adaptive Estimation of Autoregressive Models Under Long-Tailed Symmetric Distribution", Acm International Conference Proceeding Series, pp. 68-72.en_US
dc.identifier.doi10.1145/3343485.3343490
dc.identifier.endpage72en_US
dc.identifier.isbn9781450371681
dc.identifier.startpage68en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/3654
dc.language.isoenen_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.ispartofAcm International Conference Proceeding Seriesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectModified Maximum Likelihooden_US
dc.subjectAutocorrelationen_US
dc.subjectRobusten_US
dc.subjectRegressionen_US
dc.titleAdaptive Estimation of Autoregressive Models Under Long-Tailed Symmetric Distributiontr_TR
dc.titleAdaptive Estimation of Autoregressive Models Under Long-Tailed Symmetric Distributionen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: