Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A new type of equation of motion and numerical method for a harmonic oscillator with left and right fractional derivatives

dc.authorid Ullah, Malik Zaka/0000-0003-2944-0352
dc.authorscopusid 55869614600
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Ullah, Malik Zaka/H-2068-2013
dc.contributor.author Ullah, Malik Zaka
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-03-01T12:52:54Z
dc.date.available 2022-03-01T12:52:54Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Ullah, Malik Zaka] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, POB MG-23, R-76900 Magurele, Romania en_US
dc.description Ullah, Malik Zaka/0000-0003-2944-0352 en_US
dc.description.abstract The aim of this research is to propose a new fractional Euler-Lagrange equation for a harmonic oscillator. The theoretical analysis is given in order to derive the equation of motion in a fractional framework. The new equation has a complicated structure involving the left and right fractional derivatives of Caputo-Fabrizio type, so a new numerical method is developed in order to solve the above-mentioned equation effectively. As a result, we can see different asymptotic behaviors according to the flexibility provided by the use of the fractional calculus approach, a fact which may be invisible when we use the classical Lagrangian technique. This capability helps us to better understand the complex dynamics associated with natural phenomena. en_US
dc.description.publishedMonth 12
dc.description.sponsorship Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah [:221-130-1441] en_US
dc.description.sponsorship This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. G:221-130-1441. The authors, therefore, acknowledge with thanks DSR for technical and financial support. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Ullah, Malik Zaka; Baleanu, Dumitru (2020). "A new type of equation of motion and numerical method for a harmonic oscillator with left and right fractional derivatives", Chinese Journal of Physics, Vol. 68, pp. 712-722. en_US
dc.identifier.doi 10.1016/j.cjph.2020.10.012
dc.identifier.endpage 722 en_US
dc.identifier.issn 0577-9073
dc.identifier.scopus 2-s2.0-85095412269
dc.identifier.scopusquality Q1
dc.identifier.startpage 712 en_US
dc.identifier.uri https://doi.org/10.1016/j.cjph.2020.10.012
dc.identifier.volume 68 en_US
dc.identifier.wos WOS:000599451300012
dc.identifier.wosquality Q1
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 7
dc.subject Fractional Calculus en_US
dc.subject Euler-Lagrange Equation en_US
dc.subject Caputo-Fabrizio Derivative en_US
dc.subject Harmonic Oscillator en_US
dc.subject Position-Dependent Mass en_US
dc.title A new type of equation of motion and numerical method for a harmonic oscillator with left and right fractional derivatives tr_TR
dc.title A New Type of Equation of Motion and Numerical Method for a Harmonic Oscillator With Left and Right Fractional Derivatives en_US
dc.type Article en_US
dc.wos.citedbyCount 7
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: