Bateman-Feshbach Tikochinsky and Caldirola-Kanai Oscillators with New Fractional Differentiation
Loading...
Date
2017
Journal Title
Journal ISSN
Volume Title
Publisher
Mdpi
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
In this work, the study of the fractional behavior of the Bateman-Feshbach-Tikochinsky and Caldirola-Kanai oscillators by using different fractional derivatives is presented. We obtained the Euler-Lagrange and the Hamiltonian formalisms in order to represent the dynamic models based on the Liouville-Caputo, Caputo-Fabrizio-Caputo and the new fractional derivative based on the Mittag-Leffler kernel with arbitrary order . Simulation results are presented in order to show the fractional behavior of the oscillators, and the classical behavior is recovered when is equal to 1.
Description
Cordova-Fraga, Teodoro/0000-0002-6486-7530; Escobar Jimenez, Ricardo Fabricio/0000-0003-3367-6552; Gomez-Aguilar, J.F./0000-0001-9403-3767; Coronel-Escamilla, Antonio/0000-0003-3662-2939; Olivares Peregrino, Victor Hugo/0000-0002-5214-4984
Keywords
Bateman-Feshbach Tikochinsky Oscillator, Caldirola-Kanai Oscillator, Fractional Operators, Mittag-Leffler Kernel
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Coronel-Escamilla, Antonio...et al. (2017). Bateman-Feshbach Tikochinsky and Caldirola-Kanai Oscillators with New Fractional Differentiation, Entropy, 19(2).
WoS Q
Q2
Scopus Q
Q2
Source
Volume
19
Issue
2