Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Fourth Order Non-Polynomial Quintic Spline Collocation Technique for Solving Time Fractional Superdiffusion Equations

Loading...
Thumbnail Image

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

The purpose of this article is to present a technique for the numerical solution of Caputo time fractional superdiffusion equation. The central difference approximation is used to discretize the time derivative, while non-polynomial quintic spline is employed as an interpolating function in the spatial direction. The proposed method is shown to be unconditionally stable and O(h(4) + Delta t(2)) accurate. In order to check the feasibility of the proposed technique, some test examples have been considered and the simulation results are compared with those available in the existing literature.

Description

Abbas, Dr. Muhammad/0000-0002-0491-1528; Iqbal, Muhammad Kashif/0000-0003-4442-7498

Keywords

Non-Polynomial Quintic Spline, Finite Central Difference Approach, Superdiffusion Equation, Caputo Time Fractional Derivative

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Amin, Muhammad...et al. (2019) "A Fourth Order Non-Polynomial Quintic Spline Collocation Technique for Solving Time Fractional Superdiffusion Equations", Advances in Difference Equations, Vol. 2019, No. 1.

WoS Q

Q1

Scopus Q

N/A

Source

Volume

2019

Issue

1

Start Page

End Page