Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

DYNAMICS OF INTEGER-FRACTIONAL TIME-DERIVATIVE FOR THE NEW TWO-MODE KURAMOTO-SIVASHINSKY MODEL

dc.authorid Alquran, Marwan/0000-0003-3901-9270
dc.authorid Abu Afouna, Nour Hamad/0000-0002-1944-3069
dc.authorscopusid 57217604162
dc.authorscopusid 36679871400
dc.authorscopusid 57189531571
dc.authorscopusid 57215579187
dc.authorscopusid 7005872966
dc.authorwosid Jaradat, Imad/Gpk-2701-2022
dc.authorwosid Alquran, Marwan/Iup-3798-2023
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Ali, Mohammed
dc.contributor.author Alquran, Marwan
dc.contributor.author Jaradat, Imad
dc.contributor.author Abu Afouna, Nour
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2021-02-10T11:57:16Z
dc.date.available 2021-02-10T11:57:16Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Ali, Mohammed; Alquran, Marwan; Jaradat, Imad] Jordan Univ Sci & Technol, Dept Math & Stat, Irbid 22110, Jordan; [Abu Afouna, Nour] Imam Abdulrahman Bin Faisal Univ, Dept Basic Sci, Preparatory Year & Supporting Studies, POB 1982, Dammam 31441, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania en_US
dc.description Alquran, Marwan/0000-0003-3901-9270; Abu Afouna, Nour Hamad/0000-0002-1944-3069 en_US
dc.description.abstract In this paper, we investigate the dynamics of a nonlinear model responsible for the transition of turbulence phenomena and cellular instabilities to a chaos. The two-mode Kuramoto-Sivashinsky (TMKS) model is an example of such application. We study both integer and fractional time-derivative involved in this model. Solitary wave solutions and approximate analytical solutions will be derived to TMKS model by means of well-posed different techniques. The mechanism of the concepts of two-mode and time-fractional derivative will be discussed in this work. Finally, both 2-dimensional and 3-dimensional plots will be provided to support our findings. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Ali, Mohammed ...et al. (2020). "DYNAMICS OF INTEGER-FRACTIONAL TIME-DERIVATIVE FOR THE NEW TWO-MODE KURAMOTO-SIVASHINSKY MODEL", Romanian Reports in Physics, Vol. 72, No. 1. en_US
dc.identifier.issn 1221-1451
dc.identifier.issn 1841-8759
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85081207610
dc.identifier.scopusquality Q2
dc.identifier.volume 72 en_US
dc.identifier.wos WOS:000519541700003
dc.identifier.wosquality Q2
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Editura Acad Romane en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 24
dc.subject Two-Mode Kuramoto-Sivashinsky (Tmks) Model en_US
dc.subject Kudryashov-Expansion Method en_US
dc.subject Time-Fractional Tmks en_US
dc.subject Maclaurin Series en_US
dc.title DYNAMICS OF INTEGER-FRACTIONAL TIME-DERIVATIVE FOR THE NEW TWO-MODE KURAMOTO-SIVASHINSKY MODEL tr_TR
dc.title Dynamics of Integer-Fractional Time-Derivative for the New Two-Mode Kuramoto-Sivashinsky Model en_US
dc.type Article en_US
dc.wos.citedbyCount 21
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: