On A Generalized Laguerre Operational Matrix of Fractional Integration
Date
2013
Journal Title
Journal ISSN
Volume Title
Publisher
Hindawi LTD
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
A new operational matrix of fractional integration of arbitrary order for generalized Laguerre polynomials is derived. The fractional integration is described in the Riemann-Liouville sense. This operational matrix is applied together with generalized Laguerre tau method for solving general linear multiterm fractional differential equations (FDEs). The method has the advantage of obtaining the solution in terms of the generalized Laguerre parameter. In addition, only a small dimension of generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the proposed method is very effective and convenient for linear multiterm FDEs on a semi-infinite interval.
Description
Keywords
Differential-Equations, Spectral Method, Series Approach, Identification
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Bhrawy, A. H...et al. (2013). "On a Generalized Laguerre Operational Matrix of Fractional Integration", Mathematical Problems In Engineering.
WoS Q
Scopus Q
Source
Mathematical Problems In Engineering