Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A Novel Method for Analysing the Fractal Fractional Integrator Circuit

dc.contributor.author Ahmad, Shabir
dc.contributor.author Ullah, Aman
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Akgul, Esra Karatas
dc.contributor.author Akgul, Ali
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2022-03-02T07:29:51Z
dc.date.accessioned 2025-09-18T16:08:00Z
dc.date.available 2022-03-02T07:29:51Z
dc.date.available 2025-09-18T16:08:00Z
dc.date.issued 2021
dc.description Ahmad, Shabir/0000-0002-5610-6248; Ullah, Aman/0000-0003-4021-3599 en_US
dc.description.abstract In this article, we propose the integrator circuit model by the fractal-fractional operator in which fractional-order has taken in the Atangana-Baleanu sense. Through Schauder's fixed point theorem, we establish existence theory to ensure that the model posses at least one solution and via Banach fixed theorem, we guarantee that the proposed model has a unique solution. We derive the results for Ulam-Hyres stability by mean of non-linear functional analysis which shows that the proposed model is Ulam-Hyres stable under the new fractal-fractional derivative. We establish the numerical results of the model under consideration through Atanaga-Toufik method. We simulate the numerical results for different sets of fractional order and fractal dimension.(C) 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/). en_US
dc.description.publishedMonth 8
dc.identifier.citation Akgül, Ali...et al. (2021). "A novel method for analysing the fractal fractional integrator circuit", Alexandria Engineering Journal, Vol. 60, No. 4, pp. 3721-3729. en_US
dc.identifier.doi 10.1016/j.aej.2021.01.061
dc.identifier.issn 1110-0168
dc.identifier.issn 2090-2670
dc.identifier.scopus 2-s2.0-85101990416
dc.identifier.uri https://doi.org/10.1016/j.aej.2021.01.061
dc.identifier.uri https://hdl.handle.net/20.500.12416/14930
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fractal-Fractional Derivative en_US
dc.subject Stbility Analysis en_US
dc.subject Numerical Simulations en_US
dc.title A Novel Method for Analysing the Fractal Fractional Integrator Circuit en_US
dc.title A novel method for analysing the fractal fractional integrator circuit tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ahmad, Shabir/0000-0002-5610-6248
gdc.author.id Ullah, Aman/0000-0003-4021-3599
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 58486733300
gdc.author.scopusid 57223020766
gdc.author.scopusid 57211122805
gdc.author.scopusid 7005872966
gdc.author.scopusid 57202026621
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Ullah, Aman/Jqw-5104-2023
gdc.author.wosid Akgül, Ali/F-3909-2019
gdc.author.wosid Ahmad, Shabir/Aaj-8499-2021
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Akgul, Ali; Akgul, Esra Karatas] Siirt Univ, Dept Math, Art & Sci Fac, TR-56100 Siirt, Turkey; [Ahmad, Shabir; Ullah, Aman] Univ Malakand, Dept Math, Dir L, Khyber Pakhtunk, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan en_US
gdc.description.endpage 3729 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 3721 en_US
gdc.description.volume 60 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3135879203
gdc.identifier.wos WOS:000637530300004
gdc.openalex.fwci 2.90775205
gdc.openalex.normalizedpercentile 0.92
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 34
gdc.plumx.crossrefcites 35
gdc.plumx.mendeley 10
gdc.plumx.scopuscites 33
gdc.scopus.citedcount 33
gdc.wos.citedcount 30
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files