Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Novel Numerical Investigation of the Fractional Oncolytic Effectiveness Model With M1 Virus Via Generalized Fractional Derivative With Optimal Criterion

dc.contributor.author Khalid, Aasma
dc.contributor.author Sultana, Sobia
dc.contributor.author Jarad, Fahd
dc.contributor.author Abualnaja, Khadijah M.
dc.contributor.author Hamed, Y. S.
dc.contributor.author Rashid, Saima
dc.contributor.authorID 234808 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-04-25T07:45:32Z
dc.date.accessioned 2025-09-18T15:44:16Z
dc.date.available 2024-04-25T07:45:32Z
dc.date.available 2025-09-18T15:44:16Z
dc.date.issued 2022
dc.description.abstract Oncolytic virotherapy is an efficacious chemotherapeutic agent that addresses and eliminates cancerous tissues by employing recombinant infections. M1 is a spontaneously produced oncolytic alphavirus with exceptional specificity and powerful activity in individual malignancies. The objective of this paper is to develop and assess a novel fractional differential equation (FDEs)-based mathematical formalism that captures the mechanisms of oncogenic M1 immunotherapy. The aforesaid framework is demonstrated with the aid of persistence, originality, non-negativity, and stability of systems. Additionally, we also examine all conceivable steady states and the requirements that must exist for them to occur. We also investigate the global stability of these equilibria and the characteristics that induce them to be unstable. Furthermore, the Atangana- Baleanu fractional-order derivative is employed to generalize a treatment of the cancer model. This novel type of derivative furnishes us with vital understanding regarding parameters that are widely used in intricate mechanisms. The Picard-Lindelof approach is implemented to investigate the existence and uniqueness of solutions for the fractional cancer treatment system, and Picard's stability approach is used to address governing equations. The findings reveal that the system is more accurate when the fractional derivative is implemented, demonstrating that the behaviour of the cancer treatment can be interpreted when non-local phenomena are included in the system. Furthermore, numerical results for various configurations of the system are provided to exemplify the established simulation. en_US
dc.description.publishedMonth 6
dc.description.sponsorship Taif University, Taif, Saudi Arabia [TURSP-2020/217] en_US
dc.description.sponsorship This research was supported by Taif University Research Supporting Project Number (TURSP-2020/217) , Taif University, Taif, Saudi Arabia. All authors read and approved the final manuscript. en_US
dc.identifier.citation Rashid, Saima;...et.al. (2022). "Novel numerical investigation of the fractional oncolytic effectiveness model with M1 virus via generalized fractional derivative with optimal criterion", Results in Physics, Vo.37. en_US
dc.identifier.doi 10.1016/j.rinp.2022.105553
dc.identifier.issn 2211-3797
dc.identifier.scopus 2-s2.0-85129851859
dc.identifier.uri https://doi.org/10.1016/j.rinp.2022.105553
dc.identifier.uri https://hdl.handle.net/20.500.12416/14226
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Atangana-Baleanu Fractional Derivative en_US
dc.subject Picard-Lindelof Method en_US
dc.subject Equilibrium Points en_US
dc.subject Oncolytic Virus en_US
dc.title Novel Numerical Investigation of the Fractional Oncolytic Effectiveness Model With M1 Virus Via Generalized Fractional Derivative With Optimal Criterion en_US
dc.title Novel numerical investigation of the fractional oncolytic effectiveness model with M1 virus via generalized fractional derivative with optimal criterion tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Jarad, Fahd
gdc.author.scopusid 57200041124
gdc.author.scopusid 56241158200
gdc.author.scopusid 57222416397
gdc.author.scopusid 15622742900
gdc.author.scopusid 57207991954
gdc.author.scopusid 56524366100
gdc.author.wosid Rashid, Saima/Aaf-7976-2021
gdc.author.wosid Jarad, Fahd/T-8333-2018
gdc.author.wosid Sultana, Sobia/Hoc-7553-2023
gdc.author.wosid Hamed Hassanein, Yasser/Aad-7170-2022
gdc.author.wosid Khalid, Aasma/Aao-4942-2021
gdc.author.wosid Abualnaja, Khadijah M./Afv-8226-2022
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Rashid, Saima] Govt Coll Univ, Dept Math, Faisalabad 38000, Pakistan; [Khalid, Aasma] Govt Coll Women Univ, Dept Math, Faisalabad 38000, Pakistan; [Sultana, Sobia] Imam Mohammad Ibn Saud Islamic Univ, Dept Math, Riyadh 12211, Saudi Arabia; [Jarad, Fahd] Cankaya Univ, Dept Math, Ankara, Turkey; [Jarad, Fahd] King Abdulaziz Univ, Dept Math, Jaddeh, Saudi Arabia; [Jarad, Fahd] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Abualnaja, Khadijah M.; Hamed, Y. S.] Taif Univ, Fac Sci, Dept Math, POB 11099, Taif 21944, Saudi Arabia en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 37 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4225140358
gdc.identifier.wos WOS:000804943500001
gdc.openalex.fwci 1.84029592
gdc.openalex.normalizedpercentile 0.8
gdc.opencitations.count 9
gdc.plumx.crossrefcites 7
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 11
gdc.scopus.citedcount 11
gdc.wos.citedcount 10
relation.isAuthorOfPublication c818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscovery c818455d-5734-4abd-8d29-9383dae37406
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files