Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Fall detection using single-tree complex wavelet transform

dc.authorid Yazar, Ahmet/0000-0001-9348-9092
dc.authorid Keskin, Musa Furkan/0000-0002-7718-8377
dc.authorid Toreyin, Behcet Ugur/0000-0003-4406-2783
dc.authorscopusid 57190735274
dc.authorscopusid 57188756316
dc.authorscopusid 9249500700
dc.authorscopusid 57197548971
dc.authorwosid Yazar, Ahmet/V-8524-2019
dc.authorwosid Toreyin, Behcet Ugur/A-6780-2012
dc.contributor.author Yazar, Ahmet
dc.contributor.author Töreyin, Behçet Uğur
dc.contributor.author Keskin, Furkan
dc.contributor.author Toreyin, B. Ugur
dc.contributor.author Cetin, A. Enis
dc.contributor.authorID 19325 tr_TR
dc.contributor.authorID 2147 tr_TR
dc.contributor.other Elektrik-Elektronik Mühendisliği
dc.date.accessioned 2017-03-03T13:22:02Z
dc.date.available 2017-03-03T13:22:02Z
dc.date.issued 2013
dc.department Çankaya University en_US
dc.department-temp [Yazar, Ahmet; Keskin, Furkan; Cetin, A. Enis] Bilkent Univ, TR-06800 Ankara, Turkey; [Toreyin, B. Ugur] Cankaya Univ, TR-06810 Ankara, Turkey en_US
dc.description Yazar, Ahmet/0000-0001-9348-9092; Keskin, Musa Furkan/0000-0002-7718-8377; Toreyin, Behcet Ugur/0000-0003-4406-2783 en_US
dc.description.abstract The goal of Ambient Assisted Living (AAL) research is to improve the quality of life of the elderly and handicapped people and help them maintain an independent lifestyle with the use of sensors, signal processing and telecommunications infrastructure. Unusual human activity detection such as fall detection has important applications. In this paper, a fall detection algorithm for a low cost AAL system using vibration and passive infrared (PIR) sensors is proposed. The single-tree complex wavelet transform (ST-CWT) is used for feature extraction from vibration sensor signal. The proposed feature extraction scheme is compared to discrete Fourier transform and mel-frequency cepstrum coefficients based feature extraction methods. Vibration signal features are classified into "fall" and "ordinary activity" classes using Euclidean distance, Mahalanobis distance, and support vector machine (SVM) classifiers, and they are compared to each other. The PIR sensor is used for the detection of a moving person in a region of interest. The proposed system works in real-time on a standard personal computer. (C) 2012 Elsevier B.V. All rights reserved. en_US
dc.description.publishedMonth 11
dc.description.sponsorship Turk Telekom [3015-03] en_US
dc.description.sponsorship This work is supported in part by the Turk Telekom with Grant No. 3015-03. Authors are grateful to Karel Electronics Corporation for granting a GS-20DX vibration sensor. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Yazar, A...et al. (2013). Fall detection using single-tree complex wavelet transform. Pattern Recognition Letters, 34(15), 1945-1952. http://dx.doi.org/10.1016/j.patrec.2012.12.010 en_US
dc.identifier.doi 10.1016/j.patrec.2012.12.010
dc.identifier.endpage 1952 en_US
dc.identifier.issn 0167-8655
dc.identifier.issn 1872-7344
dc.identifier.issue 15 en_US
dc.identifier.scopus 2-s2.0-84885077016
dc.identifier.scopusquality Q1
dc.identifier.startpage 1945 en_US
dc.identifier.uri https://doi.org/10.1016/j.patrec.2012.12.010
dc.identifier.volume 34 en_US
dc.identifier.wos WOS:000324510900020
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 43
dc.subject Vibration Sensor en_US
dc.subject Pir Sensor en_US
dc.subject Falling Person Detection en_US
dc.subject Feature Extraction en_US
dc.subject Single-Tree Complex Wavelet Transform en_US
dc.subject Support Vector Machines en_US
dc.title Fall detection using single-tree complex wavelet transform tr_TR
dc.title Fall Detection Using Single-Tree Complex Wavelet Transform en_US
dc.type Article en_US
dc.wos.citedbyCount 33
dspace.entity.type Publication
relation.isAuthorOfPublication 31d067df-3d94-4058-a635-943b70f82ea4
relation.isAuthorOfPublication.latestForDiscovery 31d067df-3d94-4058-a635-943b70f82ea4
relation.isOrgUnitOfPublication a8b0a996-7c01-41a1-85be-843ba585ef45
relation.isOrgUnitOfPublication.latestForDiscovery a8b0a996-7c01-41a1-85be-843ba585ef45

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: