Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Fall detection using single-tree complex wavelet transform

dc.contributor.authorYazar, Ahmet
dc.contributor.authorKeskin, Furkan
dc.contributor.authorTöreyin, Behçet Uğur
dc.contributor.authorÇetin, A. Enis
dc.contributor.authorID19325tr_TR
dc.contributor.authorID2147tr_TR
dc.date.accessioned2017-03-03T13:22:02Z
dc.date.available2017-03-03T13:22:02Z
dc.date.issued2013
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Elektronik ve Haberleşme Mühendisliğien_US
dc.description.abstractThe goal of Ambient Assisted Living (AAL) research is to improve the quality of life of the elderly and handicapped people and help them maintain an independent lifestyle with the use of sensors, signal processing and telecommunications infrastructure. Unusual human activity detection such as fall detection has important applications. In this paper, a fall detection algorithm for a low cost AAL system using vibration and passive infrared (PIR) sensors is proposed. The single-tree complex wavelet transform (ST-CWT) is used for feature extraction from vibration sensor signal. The proposed feature extraction scheme is compared to discrete Fourier transform and mel-frequency cepstrum coefficients based feature extraction methods. Vibration signal features are classified into "fall" and "ordinary activity" classes using Euclidean distance, Mahalanobis distance, and support vector machine (SVM) classifiers, and they are compared to each other. The PIR sensor is used for the detection of a moving person in a region of interest. The proposed system works in real-time on a standard personal computer.en_US
dc.description.publishedMonth11
dc.identifier.citationYazar, A...et al. (2013). Fall detection using single-tree complex wavelet transform. Pattern Recognition Letters, 34(15), 1945-1952. http://dx.doi.org/10.1016/j.patrec.2012.12.010en_US
dc.identifier.doi10.1016/j.patrec.2012.12.010
dc.identifier.endpage1952en_US
dc.identifier.issn0167-8655
dc.identifier.issue15en_US
dc.identifier.startpage1945en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/1381
dc.identifier.volume34en_US
dc.language.isoenen_US
dc.publisherElsevier Science Bven_US
dc.relation.ispartofPattern Recognition Lettersen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectVibration Sensoren_US
dc.subjectPIR Sensoren_US
dc.subjectFalling Person Detectionen_US
dc.subjectFeature Extractionen_US
dc.titleFall detection using single-tree complex wavelet transformtr_TR
dc.titleFall Detection Using Single-Tree Complex Wavelet Transformen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: