Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Modeling The Fractional Non-Linear Schrodinger Equation Via Liouville-Caputo Fractional Derivative

dc.authorid Taneco-Hernandez, Marco Antonio/0000-0001-6650-1105
dc.authorid Gomez-Aguilar, J.F./0000-0001-9403-3767
dc.authorscopusid 57190015963
dc.authorscopusid 55389111400
dc.authorscopusid 55757276700
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Taneco-Hernandez, Marco Antonio/O-4660-2018
dc.authorwosid Gómez Aguilar, José/I-7027-2019
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Gomez-Aguilar, J. F.
dc.contributor.author Taneco-Hernandez, M. A.
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-04-03T22:47:05Z
dc.date.available 2020-04-03T22:47:05Z
dc.date.issued 2018
dc.department Çankaya University en_US
dc.department-temp [Morales-Delgado, V. F.; Taneco-Hernandez, M. A.] Univ Autonoma Guerrero, Fac Matemat, Av Lazaro Cardenas S-N,Cd Univ, Chilpancingo, Guerrero, Mexico; [Gomez-Aguilar, J. F.] CONACyT, Tecnol Nacl Mexico, CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico; [Baleanu, Dumitru] Cankaya Univ, Fac Art & Sci, Dept Math, TR-0630 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, MG-23, R-76900 Magurele, Romania en_US
dc.description Taneco-Hernandez, Marco Antonio/0000-0001-6650-1105; Gomez-Aguilar, J.F./0000-0001-9403-3767 en_US
dc.description.abstract In this paper the modified homotopy analysis transform method is applied to obtain approximate analytical solutions of the time-fractional non-linear Schrodinger equation. The fractional derivative is described in the Liouville-Caputo sense. The solutions are obtained in the form of rapidly convergent infinite series with easily computable terms. New exact solutions are constructed under constraint conditions. Employing theoretical parameters, we present some numerical simulations. (C) 2018 Elsevier GmbH. All rights reserved. en_US
dc.description.sponsorship CONACyT: Catedras CONACyT para jovenes investigadores; SNI-CONACyT en_US
dc.description.sponsorship Jose Francisco Gomez Aguilar acknowledges the support provided by CONACyT: Catedras CONACyT para jovenes investigadores 2014. Jose Francisco Gomez Aguilar and Marco Antonio Taneco Hernandez acknowledges the support provided by SNI-CONACyT. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.ijleo.2018.01.107
dc.identifier.endpage 7 en_US
dc.identifier.issn 0030-4026
dc.identifier.scopus 2-s2.0-85042406510
dc.identifier.scopusquality Q1
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.1016/j.ijleo.2018.01.107
dc.identifier.volume 162 en_US
dc.identifier.wos WOS:000430753800001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Elsevier Gmbh en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 25
dc.subject Liouville-Caputo Derivative en_US
dc.subject Modified Homotopy Analysis Transform Method en_US
dc.subject Exact Solutions en_US
dc.subject Ultra-Short Optical Solitons en_US
dc.title Modeling The Fractional Non-Linear Schrodinger Equation Via Liouville-Caputo Fractional Derivative tr_TR
dc.title Modeling the Fractional Non-Linear Schrodinger Equation Via Liouville-Caputo Fractional Derivative en_US
dc.type Article en_US
dc.wos.citedbyCount 23
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: