The radii of sections of origin-symmetric convex bodies and their applications
No Thumbnail Available
Date
2021
Authors
Taş, Kenan
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
LetVandWbe any convex and origin-symmetric bodies inRn.AssumethatforsomeA∈L(Rn→Rn),detA̸=0,Viscontainedin the ellipsoidA−1Bn(2), whereBn(2)is the unit Euclidean ball. WegivealowerboundfortheW-radiusofsectionsofA−1Vintermsof the spectral radius ofA∗Aand the expectations of∥·∥Vand∥·∥Wowith respect to Haar measure onSn−1⊂Rn. It is shownthattherespectiveexpectationsareboundedasn→∞inmanyimportant cases. As an application we offer a new method ofevaluation ofn-widths of multiplier operators. As an examplewe establish sharp orders ofn-widths of multiplier operatorsΛ:Lp(Md)→Lq(Md), 1<q≤2≤p<∞on compacthomogeneous Riemannian manifoldsMd. Also, we apply theseresults to prove the existence of flat polynomials onMd.
Description
Keywords
Convex Body, Volume, Multiplier, Width
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Kushpel, A.; Taş, Kenan (2021). "The radii of sections of origin-symmetric convex bodies and their applications", Journal of Complexity, Vol. 62.
WoS Q
Scopus Q
Source
Journal of Complexity
Volume
62