Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Lagrangian and Hamiltonian Mechanics on Fractals Subset of Real-Line

dc.authorid Khalili Golmankhaneh, Alireza/0000-0003-1529-7807
dc.authorid Khalili Golmankhaneh, Alireza/0000-0002-5008-0163
dc.authorid , Alireza/0000-0002-3490-7976
dc.authorscopusid 25122552100
dc.authorscopusid 57555731900
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Khalili Golmankhaneh, Alireza/L-1534-2013
dc.authorwosid Khalili Golmankhaneh, Alireza/L-1554-2013
dc.contributor.author Golmankhaneh, Alireza Khalili
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Golmankhaneh, Ali Khalili
dc.contributor.author Baleanu, Dumitru
dc.contributor.other Matematik
dc.date.accessioned 2020-05-20T13:07:51Z
dc.date.available 2020-05-20T13:07:51Z
dc.date.issued 2013
dc.department Çankaya University en_US
dc.department-temp [Golmankhaneh, Alireza Khalili; Golmankhaneh, Ali Khalili] Islamic Azad Univ, Urmia Branch, Dept Phys, Orumiyeh, Iran; [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Baleanu, Dumitru] King Abdulaziz Univ, Dept Chem & Mat Engn, Fac Engn, Jeddah 21589, Saudi Arabia en_US
dc.description Khalili Golmankhaneh, Alireza/0000-0003-1529-7807; Khalili Golmankhaneh, Alireza/0000-0002-5008-0163; , Alireza/0000-0002-3490-7976 en_US
dc.description.abstract A discontinuous media can be described by fractal dimensions. Fractal objects has special geometric properties, which are discrete and discontinuous structure. A fractal-time diffusion equation is a model for subdiffusive. In this work, we have generalized the Hamiltonian and Lagrangian dynamics on fractal using the fractional local derivative, so one can use as a new mathematical model for the motion in the fractal media. More, Poisson bracket on fractal subset of real line is suggested. en_US
dc.description.publishedMonth 11
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Lagrangian and Hamiltonian Mechanics on Fractals Subset of Real-Line By:Golmankhaneh, AK (Golmankhaneh, Alireza Khalili)[ 1 ] ; Golmankhaneh, AK (Golmankhaneh, Ali Khalili)[ 1 ] ; Baleanu, D (Baleanu, Dumitru)[ 4,2,3 ] en_US
dc.identifier.doi 10.1007/s10773-013-1733-x
dc.identifier.endpage 4217 en_US
dc.identifier.issn 0020-7748
dc.identifier.issn 1572-9575
dc.identifier.issue 11 en_US
dc.identifier.scopus 2-s2.0-84884851076
dc.identifier.scopusquality Q2
dc.identifier.startpage 4210 en_US
dc.identifier.uri https://doi.org/10.1007/s10773-013-1733-x
dc.identifier.volume 52 en_US
dc.identifier.wos WOS:000325131000043
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Springer/plenum Publishers en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 23
dc.subject Fractal Calculus en_US
dc.subject Lagrangian Mechanics en_US
dc.subject Hamiltonian Mechanics en_US
dc.subject Poisson Bracket en_US
dc.subject Variational Calculus en_US
dc.title Lagrangian and Hamiltonian Mechanics on Fractals Subset of Real-Line tr_TR
dc.title Lagrangian and Hamiltonian Mechanics on Fractals Subset of Real-Line en_US
dc.type Article en_US
dc.wos.citedbyCount 17
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dumutri, B..pdf
Size:
356.89 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: