Cantor-Type Spherical-Coordinate Method for Differential Equations Within Local Fractional Derivatives
dc.authorid | Segi Rahmat, Mohamad Rafi/0000-0001-9696-7969 | |
dc.authorid | Yang, Xiao-Jun/0000-0003-0009-4599 | |
dc.authorscopusid | 37666043500 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 37006104500 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Yang, Xiao-Jun/E-8311-2011 | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Yang, Xiao-Jun | |
dc.date.accessioned | 2025-05-13T13:32:25Z | |
dc.date.available | 2025-05-13T13:32:25Z | |
dc.date.issued | 2015 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ogretmenler Cad 14, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania; [Rahmat, Mohamad Rah Segi] Univ Nottingham, Sch Appl Math, Semenyih 43500, Selangor DE, Malaysia; [Yang, Xiao-Jun] China Univ Min & Technol, Dept Math & Mech, Xuzhou 221008, Jiangsu, Peoples R China | en_US |
dc.description | Segi Rahmat, Mohamad Rafi/0000-0001-9696-7969; Yang, Xiao-Jun/0000-0003-0009-4599 | en_US |
dc.description.abstract | In this article, we utilize the Cantor-type spherical coordinate method to investigate a family of local fractional differential operators on Cantor sets. Some examples are discussed to show the capability of this method for the damped wave, Helmholtz and heat conduction equations defined on Cantor sets. We show that it is a powerful tool to convert differential equations on Cantor sets from Cantorian-coordinate systems to Cantor-type spherical-coordinate systems. | en_US |
dc.description.woscitationindex | Book Citation Index – Science | |
dc.identifier.doi | 10.1515/9783110472097-014 | |
dc.identifier.endpage | 242 | en_US |
dc.identifier.isbn | 9783110472097 | |
dc.identifier.isbn | 9783110472080 | |
dc.identifier.scopus | 2-s2.0-84986274558 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 231 | en_US |
dc.identifier.uri | https://doi.org/10.1515/9783110472097-014 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12416/9912 | |
dc.identifier.wos | WOS:000477805300014 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | de Gruyter Open Ltd | en_US |
dc.relation.ispartof | Fractional Dynamics | en_US |
dc.relation.publicationcategory | Kitap Bölümü - Uluslararası | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 1 | |
dc.subject | Cantor Sets | en_US |
dc.subject | Local Fractional Derivatives | en_US |
dc.subject | Local Fractional Dynamic Equation | en_US |
dc.subject | Cantor-Type Spherical-Coordinate | en_US |
dc.title | Cantor-Type Spherical-Coordinate Method for Differential Equations Within Local Fractional Derivatives | en_US |
dc.type | Book Part | en_US |
dc.wos.citedbyCount | 1 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 |