Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Positive Solutions to Fractional Boundary Value Problems with Nonlinear Boundary Conditions

Loading...
Thumbnail Image

Date

2013

Authors

Baleanu, Dumitru
Bashiri, Tahereh

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

We consider a system of boundary value problems for fractional differential equation given by D-0+(beta)phi(p)(d(0+)(alpha)u)(t) = lambda(1)a(1)(t)f(1)(u(t), v(t)), t is an element of (0, 1), D-0+(beta)phi(P)(D(0+)(alpha)v)(t) - lambda(2)a(2)(t)f(2)(u(t), v(t)), t is an element of (0, 1), where 1 < alpha, beta <= 2, 2 < alpha + beta <= 4, lambda(1), lambda(2) are eigenvalues, subject either to the boundary conditions D(0+)(alpha)u(0) = D(0+)(alpha)u(1) = 0, u(0) = 0, D(0+)(alpha)u(1) - Sigma(m-2)(i=1)a(1i) D(0+)(beta 1)u(xi(1i)) = 0, D(0+)(alpha)v(0) = D(0+)(alpha)v(1) =0, v(0) = 0, D(0+)(beta 1)v(1) - Sigma(m-2)(i=1)a(2i)D(0+)(beta 1)v(xi(2i)) = 0 or D(0+)(alpha)u(0) = D(0+)(alpha)u(1) = 0, u(0) = 0, D(0+)(beta 1)u(1) - Sigma(m-2)(i=1)a(1i)D(0+)(beta 1)u(xi(1i)) = psi(1)(u), D(0+)(alpha)v(0) = D(0+)(alpha)v(1) = 0, v(0) = 0, D(0+)(beta 1)v(1) - Sigma(m-2)(i=1)a(2i) D(0+)(beta 1)v(xi(2i)) = psi(2)(v) where 0 < beta(1) < 1, alpha - beta(1) - 1 > 0 and psi(1), psi(2) : C([0, 1]) -> [0, infinity) are continuous functions. The Krasnoselskiis fixed point theorem is applied to prove the existence of at least one positive solution for both fractional boundary value problems. As an application, an example is given to demonstrate some of main results.

Description

Keywords

Existence, Equation

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Nyamoradi, Nemat; Baleanu, Dumitru; Bashiri, Tahereh. (2013). "Positive Solutions to Fractional Boundary Value Problems with Nonlinear Boundary Conditions", Abstract And Applied Analysis.

WoS Q

Scopus Q

Source

Abstract And Applied Analysis

Volume

Issue

Start Page

End Page