Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Exact Traveling-Wave Solution for Local Fractional Boussinesq Equation in Fractal Domain

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

World Scientific Publ Co Pte Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

The new Boussinesq-type model in a fractal domain is derived based on the formulation of the local fractional derivative. The novel traveling wave transform of the non-differentiable type is adopted to convert the local fractional Boussinesq equation into a nonlinear local fractional ODE. The exact traveling wave solution is also obtained with aid of the non-differentiable graph. The proposed method, involving the fractal special functions, is efficient for finding the exact solutions of the nonlinear PDEs in fractal domains.

Description

Tenreiro Machado, J. A./0000-0003-4274-4879; Yang, Xiao-Jun/0000-0003-0009-4599

Keywords

Exact Traveling-Wave Solution, Local Fractional Boussinesq Equation, Local Fractional Derivative, Fractals

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Exact Traveling-Wave Solution For Local Fractional Boussinesq Equation in Fractal Domain. (2017) Yang, Xiao-Jun; Tenreiro Machado, J. A.; Baleanu, Dumitru, Fractals-Complex Geometry Patterns And Scaling in Nature And Society, 25(4)

WoS Q

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
166

Source

Volume

25

Issue

4

Start Page

End Page

PlumX Metrics
Citations

CrossRef : 101

Scopus : 190

Captures

Mendeley Readers : 16

Web of Science™ Citations

179

checked on Nov 24, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
23.001726

Sustainable Development Goals

SDG data is not available