A generalisation of the Malgrange-Ehrenpreis theorem to find fundamental solutions to fractional PDEs
dc.authorid | Fernandez, Arran/0000-0002-1491-1820 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 57193722100 | |
dc.authorwosid | Fernandez, Arran/E-7134-2019 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Fernandez, Arran | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2019-12-19T13:51:42Z | |
dc.date.available | 2019-12-19T13:51:42Z | |
dc.date.issued | 2017 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Fernandez, Arran] Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England | en_US |
dc.description | Fernandez, Arran/0000-0002-1491-1820 | en_US |
dc.description.abstract | We present and prove a new generalisation of the Malgrange-Ehrenpreis theorem to fractional partial differential equations, which can be used to construct fundamental solutions to all partial differential operators of rational order and many of arbitrary real order. We demonstrate with some examples and mention a few possible applications. | en_US |
dc.description.sponsorship | Engineering and Physical Sciences Research Council, UK | en_US |
dc.description.sponsorship | The second author wishes to thank Anthony Ashton and Thanasis Fokas for helpful discussions and recommendations to the literature. Both authors would like to thank the anonymous referee for their very useful comments and remarks. The second author is funded by a grant from the Engineering and Physical Sciences Research Council, UK. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Baleanu, Dumitru; Fernandez, Arran (2017). A generalisation of the Malgrange-Ehrenpreis theorem to find fundamental solutions to fractional PDEs, Electronic Journal Of Qualitative Theory Of Differential Equations, 15, 1-12 | en_US |
dc.identifier.doi | 10.14232/ejqtde.2017.1.15 | |
dc.identifier.endpage | 12 | en_US |
dc.identifier.issn | 1417-3875 | |
dc.identifier.issue | 15 | en_US |
dc.identifier.scopus | 2-s2.0-85016098979 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 1 | en_US |
dc.identifier.uri | https://doi.org/10.14232/ejqtde.2017.1.15 | |
dc.identifier.wos | WOS:000399306700001 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Univ Szeged, Bolyai institute | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 14 | |
dc.subject | Fractional Derivatives | en_US |
dc.subject | Fundamental Solutions | en_US |
dc.subject | Linear Partial Differential Equations | en_US |
dc.subject | Constructive Solutions | en_US |
dc.title | A generalisation of the Malgrange-Ehrenpreis theorem to find fundamental solutions to fractional PDEs | tr_TR |
dc.title | A Generalisation of the Malgrange-Ehrenpreis Theorem To Find Fundamental Solutions To Fractional Pdes | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 13 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |