New estimates considering the generalized proportional Hadamard fractional integral operators
dc.authorscopusid | 36454387300 | |
dc.authorscopusid | 57200041124 | |
dc.authorscopusid | 15622742900 | |
dc.authorscopusid | 56724169900 | |
dc.authorscopusid | 9839077200 | |
dc.authorwosid | Jarad, Fahd/T-8333-2018 | |
dc.authorwosid | Rashid, Saima/Aaf-7976-2021 | |
dc.contributor.author | Zhou, Shuang-Shuang | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.author | Rashid, Saima | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.author | Kalsoom, Humaira | |
dc.contributor.author | Chu, Yu-Ming | |
dc.contributor.authorID | 234808 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2022-07-07T11:45:13Z | |
dc.date.available | 2022-07-07T11:45:13Z | |
dc.date.issued | 2020 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Chu, Yu-Ming] Huzhou Univ, Dept Math, Huzhou, Peoples R China; [Chu, Yu-Ming] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha, Peoples R China; [Zhou, Shuang-Shuang] Hunan City Univ, Sch Sci, Yiyang, Peoples R China; [Rashid, Saima] Govt Univ, Dept Math, Faisalabad, Pakistan; [Jarad, Fahd] Cankaya Univ, Dept Math, Ankara, Turkey; [Kalsoom, Humaira] Zhejiang Univ, Sch Math Sci, Hangzhou, Peoples R China | en_US |
dc.description.abstract | In the article, we describe the Gruss type inequality, provide some related inequalities by use of suitable fractional integral operators, address several variants by utilizing the generalized proportional Hadamard fractional (GPHF) integral operator. It is pointed out that our introduced new integral operators with nonlocal kernel have diversified applications. Our obtained results show the computed outcomes for an exceptional choice to the GPHF integral operator with parameter and the proportionality index. Additionally, we illustrate two examples that can numerically approximate these operators. | en_US |
dc.description.publishedMonth | 12 | |
dc.description.sponsorship | Natural Science Foundation of China [11971142, 61673169, 11871202, 11701176, 11626101, 11601485] | en_US |
dc.description.sponsorship | The work was supported by the Natural Science Foundation of China (Grant Nos. 11971142, 61673169, 11871202, 11701176, 11626101, 11601485). | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Zhou, Shuang-Shuang...et al. (2020). "New estimates considering the generalized proportional Hadamard fractional integral operators", Advances in Difference Equations, Vol. 2020, No. 1. | en_US |
dc.identifier.doi | 10.1186/s13662-020-02730-w | |
dc.identifier.issn | 1687-1847 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85086257515 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.uri | https://doi.org/10.1186/s13662-020-02730-w | |
dc.identifier.volume | 2020 | en_US |
dc.identifier.wos | WOS:000541571200003 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 64 | |
dc.subject | Gruss Inequality | en_US |
dc.subject | Fractional Calculus | en_US |
dc.subject | Generalized Proportional Hadamard Fractional Integral Operator | en_US |
dc.subject | Riemann-Liouville Fractional Integral Operator | en_US |
dc.title | New estimates considering the generalized proportional Hadamard fractional integral operators | tr_TR |
dc.title | New Estimates Considering the Generalized Proportional Hadamard Fractional Integral Operators | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 49 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isAuthorOfPublication.latestForDiscovery | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |