Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Bitcoin Price Prediction Using Sentiment Analysis and Empirical Mode Decomposition

dc.contributor.author Arslan, Serdar
dc.contributor.other 06.01. Bilgisayar Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2025-05-11T17:06:19Z
dc.date.accessioned 2025-09-18T14:09:06Z
dc.date.available 2025-05-11T17:06:19Z
dc.date.available 2025-09-18T14:09:06Z
dc.date.issued 2025
dc.description.abstract Cryptocurrencies have garnered significant attention recently due to widespread investments. Additionally, researchers have increasingly turned to social media, particularly in the context of financial markets, to harness its predictive capabilities. Investors rely on platforms like Twitter to analyze investments and detect trends, which can directly impact the future price movements of Bitcoin. Understanding and analyzing Twitter sentiments can potentially provide insights into future Bitcoin price movements and can shed light on how investor sentiment affects cryptocurrency markets. In this study, we explore the correlation between Twitter activity and Bitcoin prices by examining tweets related to Bitcoin price sentiments. Our proposed model consists of two distinct networks. The first network exclusively utilizes historical price data, which is further decomposed into various components using the Empirical Mode Decomposition method. This decomposition helps mitigate the impact of irregular fluctuations on Bitcoin price predictions. Each of these components is then separately processed by Long Short-Term Memory (LSTM) networks. The second network focuses on modeling user sentiments and emotions in conjunction with Bitcoin market data. User opinions are categorized into positive and negative classes and are integrated with historical data to predict the next-day price using LSTM networks. Finally, the outputs of each network are combined to form the ultimate prediction values. Experimental results demonstrate that Twitter sentiment can effectively helps us predict Bitcoin price trends. Furthermore, to validate our proposed model, we compared it with several state-of-the-art methods. The results indicate that our approach outperforms these existing models in terms of accuracy. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1007/s10614-024-10588-3
dc.identifier.isbn 069112549X
dc.identifier.isbn 9780691125497
dc.identifier.issn 1572-9974
dc.identifier.issn 0927-7099
dc.identifier.scopus 2-s2.0-105001477541
dc.identifier.uri https://doi.org/10.1007/s10614-024-10588-3
dc.identifier.uri https://hdl.handle.net/20.500.12416/13276
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Computational Economics en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Cryptocurrency en_US
dc.subject EMD en_US
dc.subject Ensemble Learning en_US
dc.subject Prediction en_US
dc.title Bitcoin Price Prediction Using Sentiment Analysis and Empirical Mode Decomposition en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Arslan, Serdar/0000-0003-3115-0741
gdc.author.institutional Arslan, Serdar
gdc.author.scopusid 57767747500
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Arslan] Serdar, Department of Computer Engineering, Çankaya Üniversitesi, Ankara, Turkey en_US
gdc.description.endpage 2248 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 2227 en_US
gdc.description.volume 65 en_US
gdc.description.woscitationindex Science Citation Index Expanded - Social Science Citation Index
gdc.description.wosquality Q2
gdc.identifier.openalex W4399096407
gdc.identifier.wos WOS:001233735800001
gdc.openalex.fwci 12.43479504
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 59
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.wos.citedcount 7
relation.isAuthorOfPublication ee02ccda-1b5e-4bba-b8b3-ece13ce2ec47
relation.isAuthorOfPublication.latestForDiscovery ee02ccda-1b5e-4bba-b8b3-ece13ce2ec47
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files