Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Terminal Value Problem For Stochastic Fractional Equation Within An Operator With Exponential Kernel

dc.authorscopusid 57209410617
dc.authorscopusid 57192374133
dc.authorscopusid 7005872966
dc.authorscopusid 59036224800
dc.authorwosid Nguyen, Tuan/Acg-0465-2022
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Phuong, Nguyen Duc
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Hoan, Luu Vu Cam
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Nguyen, Anh Tuan
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-01-26T07:57:38Z
dc.date.available 2024-01-26T07:57:38Z
dc.date.issued 2023
dc.department Çankaya University en_US
dc.department-temp [Phuong, Nguyen Duc] Ind Univ Ho Chi Minh City, Fac Fundamental Sci, Ho Chi Minh City, Vietnam; [Hoan, Luu Vu Cam] Posts & Telecommun Inst Technol, Fac Basic Sci, Ho Chi Minh City, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkiye; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Nguyen, Anh Tuan] Van Lang Univ, Sci & Technol Adv Inst, Div Appl Math, Ho Chi Minh City, Vietnam; [Nguyen, Anh Tuan] Van Lang Univ, Fac Appl Technol, Sch Technol, Ho Chi Minh City, Vietnam en_US
dc.description.abstract In this paper, we investigate a terminal value problem for stochastic fractional diffusion equations with Caputo-Fabrizio derivative. The stochastic noise we consider here is the white noise taken value in the Hilbert space W. The main contribution is to investigate the well-posedness and ill-posedness of such problem in two distinct cases of the smoothness of the Hilbert scale space W? (see Assumption 3.1), which is a subspace of W. When W? is smooth enough, i.e. the parameter ? is sufficiently large, our problem is well-posed and it has a unique solution in the space of Holder continuous functions. In contract, in the different case when ? is smaller, our problem is ill-posed; therefore, we construct a regularization result. en_US
dc.description.publishedMonth 4
dc.description.sponsorship Industrial University of Ho Chi Minh City, Vietnam [21/1CB02]; Van Lang University en_US
dc.description.sponsorship The first author would like to acknowledge the financial support of this research provided by Industrial University of Ho Chi Minh City, Vietnam under Grant named Regularization solution of partial differential stochastic equations (Grant No. 21/1CB02). Anh Tuan Nguyen would like to thank the support from Van Lang University. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Phuong, Nguyen Duc;...et.al. (2023). "Terminal Value Problem For Stochastic Fractional Equation Within An Operator With Exponential Kernel", Fractals, Vol.31, No.4. en_US
dc.identifier.doi 10.1142/S0218348X23400625
dc.identifier.issn 0218-348X
dc.identifier.issn 1793-6543
dc.identifier.issue 4 en_US
dc.identifier.scopus 2-s2.0-85157965630
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1142/S0218348X23400625
dc.identifier.volume 31 en_US
dc.identifier.wos WOS:000978807400002
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 1
dc.subject Ill-Posed Problem en_US
dc.subject Fractional Stochastic Equation en_US
dc.subject Hilbert Scales en_US
dc.subject Caputo-Fabrizio Derivative en_US
dc.title Terminal Value Problem For Stochastic Fractional Equation Within An Operator With Exponential Kernel tr_TR
dc.title Terminal Value Problem for Stochastic Fractional Equation Within an Operator With Exponential Kernel en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: