Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Detection of hand osteoarthritis from hand radiographs using convolutional neural networks with transfer learning

dc.authorid Erbay, Hasan/0000-0002-7555-541X
dc.authorscopusid 6507776586
dc.authorscopusid 55900695500
dc.authorscopusid 56875440000
dc.authorwosid Maras, Hakan/G-1236-2017
dc.authorwosid Erbay, Hasan/F-1093-2016
dc.contributor.author Ureten, Kemal
dc.contributor.author Erbay, Hasan
dc.contributor.author Maras, Hadi Hakan
dc.contributor.authorID 34410 tr_TR
dc.contributor.other Bilgisayar Mühendisliği
dc.date.accessioned 2022-04-01T12:13:22Z
dc.date.available 2022-04-01T12:13:22Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Ureten, Kemal] Kirikkale Univ, Fac Med, Dept Rheumatol, Kirikkale, Turkey; [Ureten, Kemal; Maras, Hadi Hakan] Cankaya Univ, Fac Engn, Dept Comp Engn, Ankara, Turkey; [Erbay, Hasan] Univ Turkish Aeronaut Assoc, Fac Engn, Dept Comp Engn, Ankara, Turkey en_US
dc.description Erbay, Hasan/0000-0002-7555-541X en_US
dc.description.abstract Osteoarthritis is the most common type of arthritis. Hand osteoarthritis leads to specific structural changes in the joints, such as asymmetric joint space narrowing and osteophytes (bone spurs). Conventional radiography has traditionally been the primary method of visualizing these structural changes and diagnosing osteoarthritis. We aimed to develop a computerized method that is capable of determining the structural changes seen in radiography of the hand and to assist practitioners in interpreting radiographic changes and diagnosing the disease. In this retrospective study, transfer-learning-based convolutional neural networks were trained on a randomly selected dataset containing 332 radiography images of hands from an original set of 420 and were validated with the remaining 88. Multilayer convolutional neural network models were designed based on a transfer learning method using pretrained AlexNet, GoogLeNet, and VGG-19 networks. The accuracies of the models were 93.2% for AlexNet, 94.3% for GoogLeNet, and 96.6% for VGG-19. The sensitivities of these models were 0.9167 for AlexNet, 0.9184 for GoogLeNet, and 0.9574 for VGG-19, while the specificity values were 0.9500, 0.9744, and 0.9756, respectively. The performance metrics, including accuracy, sensitivity, specificity, and precision, of our newly developed automated diagnosis methods are promising in the diagnosis of hand osteoarthritis. Our computer-aided detection systems may help physicians in interpreting hand radiography images, diagnosing osteoarthritis, and saving time. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Üreten, Kemal; Erbay, Hasan; Maraş, Hadi Hakan (2020). "Detection of hand osteoarthritis from hand radiographs using convolutional neural networks with transfer learning", Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 28, No. 5, pp. 2968-2978. en_US
dc.identifier.doi 10.3906/elk-1912-23
dc.identifier.endpage 2978 en_US
dc.identifier.issn 1300-0632
dc.identifier.issn 1303-6203
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-85095737227
dc.identifier.scopusquality Q3
dc.identifier.startpage 2968 en_US
dc.identifier.uri https://doi.org/10.3906/elk-1912-23
dc.identifier.volume 28 en_US
dc.identifier.wos WOS:000576688200001
dc.identifier.wosquality Q4
dc.institutionauthor Maraş, Hadi Hakan
dc.language.iso en en_US
dc.publisher Tubitak Scientific & Technological Research Council Turkey en_US
dc.relation.ispartof Turkish Journal of Electrical Engineering and Computer Sciences en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 14
dc.subject Hand Osteoarthritis en_US
dc.subject Convolutional Neural Networks en_US
dc.subject Transfer Learning en_US
dc.subject Conventional Hand Radiography en_US
dc.subject Classification en_US
dc.title Detection of hand osteoarthritis from hand radiographs using convolutional neural networks with transfer learning tr_TR
dc.title Detection of Hand Osteoarthritis From Hand Radiographs Using Convolutional Neural Networks With Transfer Learning en_US
dc.type Article en_US
dc.wos.citedbyCount 10
dspace.entity.type Publication
relation.isAuthorOfPublication 8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isAuthorOfPublication.latestForDiscovery 8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: