Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On the Fractional Diffusion Equation Associated With Exponential Source and Operator With Exponential Kernel

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Asme

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

In this paper, we investigate the well-posedness of mild solutions of the time-fractional diffusion equation with an exponential source function and the Caputo-Fabrizio derivative of a fractional order a is an element of ( 0 , 1 ). Some linear estimates of the solution kernels on Hilbert scale spaces are constructed using a spectrum of the Dirichlet Laplacian. Based on the Banach fixed point theorem, the global existence and uniqueness of the small-data mild solution are approved. This work is considered the first study on the time-fractional diffusion equation with a nonlinear function for all common dimensions of 1, 2, and 3.

Description

Nguyen, Van Thinh/0000-0002-7408-2585; Nguyen, Van Tien/0000-0002-0975-9131

Keywords

Caputo-Fabrizio, Exponential Nonlinearity, Global Well-Posedness, Global Existence

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Nguyen, Anh Tuan;...et.al. (2023). "On the Fractional Diffusion Equation Associated With Exponential Source and Operator With Exponential Kernel", Journal Of Computational And Nonlinear Dynamics, Vol.18, No.5.

WoS Q

Q3

Scopus Q

Q2

Source

Volume

18

Issue

5

Start Page

End Page