Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Comparative study of artificial neural network versus parametric method in COVID-19 data analysis

dc.authorid Colak, Andac Batur/0000-0001-9297-8134
dc.authorid Shafiq, Anum/0000-0001-7186-7216
dc.authorid Lone, Showkat Ahmad/0000-0001-7149-3314
dc.authorid Sindhu, Tabassum/0000-0001-9433-4981
dc.authorscopusid 57201708424
dc.authorscopusid 57216657788
dc.authorscopusid 57226867350
dc.authorscopusid 56079695400
dc.authorscopusid 57222178822
dc.authorscopusid 15622742900
dc.authorwosid Jarad, Fahd/T-8333-2018
dc.authorwosid Colak, Andac Batur/Aav-3639-2020
dc.authorwosid Shafiq, Anum/F-9967-2018
dc.authorwosid Lone, Showkat Ahmad/Caa-0863-2022
dc.authorwosid Sindhu, Tabassum/Aar-5257-2020
dc.contributor.author Shafiq, Anum
dc.contributor.author Jarad, Fahd
dc.contributor.author Colak, Andac Batur
dc.contributor.author Sindhu, Tabassum Naz
dc.contributor.author Lone, Showkat Ahmad
dc.contributor.author Alsubie, Abdelaziz
dc.contributor.author Jarad, Fahd
dc.contributor.authorID 234808 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-02-29T12:03:55Z
dc.date.available 2024-02-29T12:03:55Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [Shafiq, Anum] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China; [Colak, Andac Batur] Nigde Omer Halisdemir Univ, Mech Engn Dept, Nigde, Turkey; [Sindhu, Tabassum Naz] Quaid I Azam Univ, Dept Stat, Islamabad 45320, Pakistan; [Lone, Showkat Ahmad; Alsubie, Abdelaziz] Saudi Elect Univ, Coll Sci & Theoret Studies, Dept Basic Sci, Riyadh 11673, Saudi Arabia; [Jarad, Fahd] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Jarad, Fahd] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan en_US
dc.description Colak, Andac Batur/0000-0001-9297-8134; Shafiq, Anum/0000-0001-7186-7216; Lone, Showkat Ahmad/0000-0001-7149-3314; Sindhu, Tabassum/0000-0001-9433-4981 en_US
dc.description.abstract Since the previous two years, a new coronavirus (COVID-19) has found a major global problem. The speedy pathogen over the globe was followed by a shockingly large number of afflicted people and a gradual increase in the number of deaths. If the survival analysis of active individuals can be predicted, it will help to contain the epidemic significantly in any area. In medical diagnosis, prognosis and survival analysis, neural networks have been found to be as successful as general nonlinear models. In this study, a real application has been developed for estimating the COVID-19 mortality rates in Italy by using two different methods, artificial neural network modeling and maximum likelihood estimation. The predictions obtained from the multilayer artificial neural network model developed with 9 neurons in the hidden layer were compared with the numerical results. The maximum deviation calculated for the artificial neural network model was -0.14% and the R value was 0.99836. The study findings confirmed that the two different statistical models that were developed had high reliability. en_US
dc.description.publishedMonth 7
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Shafiq, Anum;...et.al. (2022). "Comparative study of artificial neural network versus parametric method in COVID-19 data analysis", Results in Physics, Vol.38. en_US
dc.identifier.doi 10.1016/j.rinp.2022.105613
dc.identifier.issn 2211-3797
dc.identifier.pmid 35600673
dc.identifier.scopus 2-s2.0-85130819263
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.rinp.2022.105613
dc.identifier.volume 38 en_US
dc.identifier.wos WOS:000804942300006
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 54
dc.subject Reliability Function en_US
dc.subject Maximum Likelihood Estimation en_US
dc.subject Artificial Neural Network en_US
dc.subject Failure Rate Function en_US
dc.title Comparative study of artificial neural network versus parametric method in COVID-19 data analysis tr_TR
dc.title Comparative Study of Artificial Neural Network Versus Parametric Method in Covid-19 Data Analysis en_US
dc.type Article en_US
dc.wos.citedbyCount 54
dspace.entity.type Publication
relation.isAuthorOfPublication c818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscovery c818455d-5734-4abd-8d29-9383dae37406
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
8.36 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı Sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: