Comparative study of artificial neural network versus parametric method in COVID-19 data analysis
dc.authorid | Colak, Andac Batur/0000-0001-9297-8134 | |
dc.authorid | Shafiq, Anum/0000-0001-7186-7216 | |
dc.authorid | Lone, Showkat Ahmad/0000-0001-7149-3314 | |
dc.authorid | Sindhu, Tabassum/0000-0001-9433-4981 | |
dc.authorscopusid | 57201708424 | |
dc.authorscopusid | 57216657788 | |
dc.authorscopusid | 57226867350 | |
dc.authorscopusid | 56079695400 | |
dc.authorscopusid | 57222178822 | |
dc.authorscopusid | 15622742900 | |
dc.authorwosid | Jarad, Fahd/T-8333-2018 | |
dc.authorwosid | Colak, Andac Batur/Aav-3639-2020 | |
dc.authorwosid | Shafiq, Anum/F-9967-2018 | |
dc.authorwosid | Lone, Showkat Ahmad/Caa-0863-2022 | |
dc.authorwosid | Sindhu, Tabassum/Aar-5257-2020 | |
dc.contributor.author | Shafiq, Anum | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.author | Colak, Andac Batur | |
dc.contributor.author | Sindhu, Tabassum Naz | |
dc.contributor.author | Lone, Showkat Ahmad | |
dc.contributor.author | Alsubie, Abdelaziz | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.authorID | 234808 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2024-02-29T12:03:55Z | |
dc.date.available | 2024-02-29T12:03:55Z | |
dc.date.issued | 2022 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Shafiq, Anum] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China; [Colak, Andac Batur] Nigde Omer Halisdemir Univ, Mech Engn Dept, Nigde, Turkey; [Sindhu, Tabassum Naz] Quaid I Azam Univ, Dept Stat, Islamabad 45320, Pakistan; [Lone, Showkat Ahmad; Alsubie, Abdelaziz] Saudi Elect Univ, Coll Sci & Theoret Studies, Dept Basic Sci, Riyadh 11673, Saudi Arabia; [Jarad, Fahd] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Jarad, Fahd] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan | en_US |
dc.description | Colak, Andac Batur/0000-0001-9297-8134; Shafiq, Anum/0000-0001-7186-7216; Lone, Showkat Ahmad/0000-0001-7149-3314; Sindhu, Tabassum/0000-0001-9433-4981 | en_US |
dc.description.abstract | Since the previous two years, a new coronavirus (COVID-19) has found a major global problem. The speedy pathogen over the globe was followed by a shockingly large number of afflicted people and a gradual increase in the number of deaths. If the survival analysis of active individuals can be predicted, it will help to contain the epidemic significantly in any area. In medical diagnosis, prognosis and survival analysis, neural networks have been found to be as successful as general nonlinear models. In this study, a real application has been developed for estimating the COVID-19 mortality rates in Italy by using two different methods, artificial neural network modeling and maximum likelihood estimation. The predictions obtained from the multilayer artificial neural network model developed with 9 neurons in the hidden layer were compared with the numerical results. The maximum deviation calculated for the artificial neural network model was -0.14% and the R value was 0.99836. The study findings confirmed that the two different statistical models that were developed had high reliability. | en_US |
dc.description.publishedMonth | 7 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Shafiq, Anum;...et.al. (2022). "Comparative study of artificial neural network versus parametric method in COVID-19 data analysis", Results in Physics, Vol.38. | en_US |
dc.identifier.doi | 10.1016/j.rinp.2022.105613 | |
dc.identifier.issn | 2211-3797 | |
dc.identifier.pmid | 35600673 | |
dc.identifier.scopus | 2-s2.0-85130819263 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.rinp.2022.105613 | |
dc.identifier.volume | 38 | en_US |
dc.identifier.wos | WOS:000804942300006 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 54 | |
dc.subject | Reliability Function | en_US |
dc.subject | Maximum Likelihood Estimation | en_US |
dc.subject | Artificial Neural Network | en_US |
dc.subject | Failure Rate Function | en_US |
dc.title | Comparative study of artificial neural network versus parametric method in COVID-19 data analysis | tr_TR |
dc.title | Comparative Study of Artificial Neural Network Versus Parametric Method in Covid-19 Data Analysis | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 54 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isAuthorOfPublication.latestForDiscovery | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |