Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Customer Order Scheduling Problem: a Comparative Metaheuristics Study

dc.contributor.author Hazir, Oncue
dc.contributor.author Gunalay, Yavuz
dc.contributor.author Erel, Erdal
dc.contributor.authorID 56488 tr_TR
dc.contributor.authorID 3019 tr_TR
dc.contributor.authorID 1986 tr_TR
dc.date.accessioned 2016-04-08T11:05:45Z
dc.date.accessioned 2025-09-18T12:48:08Z
dc.date.available 2016-04-08T11:05:45Z
dc.date.available 2025-09-18T12:48:08Z
dc.date.issued 2008
dc.description Gunalay, Yavuz/0000-0003-1541-9755; Hazir, Oncu/0000-0003-0183-8772 en_US
dc.description.abstract The customer order scheduling problem (COSP) is defined as to determine the sequence of tasks to satisfy the demand of customers who order several types of products produced on a single machine. A setup is required whenever a product type is launched. The objective of the scheduling problem is to minimize the average customer order flow time. Since the customer order scheduling problem is known to be strongly NP-hard, we solve it using four major metaheuristics and compare the performance of these heuristics, namely, simulated annealing, genetic algorithms, tabu search, and ant colony optimization. These are selected to represent various characteristics of metaheuristics: nature-inspired vs. artificially created, population-based vs. local search, etc. A set of problems is generated to compare the solution quality and computational efforts of these heuristics. Results of the experimentation show that tabu search and ant colony perform better for large problems whereas simulated annealing performs best in small-size problems. Some conclusions are also drawn on the interactions between various problem parameters and the performance of the heuristics. en_US
dc.description.publishedMonth 5
dc.identifier.citation Hazır, Ö., Günalay, Y., Erel, E. (2008). Customer order scheduling problem: a comparative metaheuristics study. International Journal of Advanced Manufacturing Technology, 37(5-6), 589-598. http://dx.doi.org/10.1007/s00170-007-0998-8 en_US
dc.identifier.doi 10.1007/s00170-007-0998-8
dc.identifier.issn 0268-3768
dc.identifier.issn 1433-3015
dc.identifier.scopus 2-s2.0-42449111726
dc.identifier.uri https://doi.org/10.1007/s00170-007-0998-8
dc.identifier.uri https://hdl.handle.net/123456789/11979
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Metaheuristics en_US
dc.subject Customer Order Scheduling en_US
dc.subject Simulated Annealing en_US
dc.subject Genetic Algorithms en_US
dc.subject Tabu Search en_US
dc.subject Ant Colony Optimization en_US
dc.title Customer Order Scheduling Problem: a Comparative Metaheuristics Study en_US
dc.title Customer order scheduling problem: a comparative metaheuristics study tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Gunalay, Yavuz/0000-0003-1541-9755
gdc.author.id Hazir, Oncu/0000-0003-0183-8772
gdc.author.scopusid 23034277700
gdc.author.scopusid 6508129771
gdc.author.scopusid 7003748258
gdc.author.wosid Gunalay, Yavuz/Aae-8228-2019
gdc.author.wosid Hazir, Oncu/C-8920-2013
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Hazir, Oncue; Gunalay, Yavuz; Erel, Erdal] Bilkent Univ, Fac Business Adm, TR-06800 Ankara, Turkey; [Hazir, Oncue] Cankaya Univ, Dept Ind Engn, TR-06530 Ankara, Turkey en_US
gdc.description.endpage 598 en_US
gdc.description.issue 5-6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 589 en_US
gdc.description.volume 37 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W1974225208
gdc.identifier.wos WOS:000255198400017
gdc.openalex.fwci 6.48180342
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 27
gdc.plumx.crossrefcites 18
gdc.plumx.mendeley 23
gdc.plumx.scopuscites 31
gdc.scopus.citedcount 31
gdc.wos.citedcount 28
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files