Texture Segmentation Using the Mixtures of Principal Component Analyzers
dc.authorid | Atalay, Volkan/0000-0001-7850-0601 | |
dc.authorscopusid | 7005523654 | |
dc.authorscopusid | 7005182525 | |
dc.authorscopusid | 7006928685 | |
dc.authorscopusid | 6602757969 | |
dc.authorwosid | De Ridder, Dick/F-3169-2010 | |
dc.authorwosid | Atalay, Volkan/M-2256-2016 | |
dc.contributor.author | Musa, MEM | |
dc.contributor.author | Duin, RPW | |
dc.contributor.author | de Ridder, D | |
dc.contributor.author | Atalay, V | |
dc.date.accessioned | 2025-05-13T13:45:02Z | |
dc.date.available | 2025-05-13T13:45:02Z | |
dc.date.issued | 2003 | |
dc.department | Çankaya University | en_US |
dc.department-temp | Cankaya Univ, Dept Comp Engn, Ankara, Turkey; Delft Univ Technol, Fac Appl Phys, Pattern Recognit Grp, NL-2628 CJ Delft, Netherlands; Middle E Tech Univ, Dept Comp Engn, TR-06531 Ankara, Turkey | en_US |
dc.description | Atalay, Volkan/0000-0001-7850-0601 | en_US |
dc.description.abstract | The problem of segmenting an image into several modalities representing different textures can be modelled using Gaussian mixtures. Moreover, texture image patches when translated, rotated or scaled lie in low dimensional subspaces of the high-dimensional space spanned by the grey values. These two aspects make the mixture of local subspace models worth consideration for segmenting this type of images. In recent years a number of mixtures of local PCA models have been proposed. Most of these models require the user to set the number of subspaces and subspace dimensionalities. To make the model autonomous, we propose a greedy EM algorithm to find a suboptimal number of subspaces, besides using a global retained variance ratio to estimate for each subspace the dimensionality that retains the given variability ratio. We provide experimental results for testing the proposed method on texture segmentation. | en_US |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science - Science Citation Index Expanded | |
dc.identifier.doi | 10.1007/978-3-540-39737-3_63 | |
dc.identifier.endpage | 512 | en_US |
dc.identifier.isbn | 3540204091 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.scopus | 2-s2.0-0142246098 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 505 | en_US |
dc.identifier.uri | https://doi.org/10.1007/978-3-540-39737-3_63 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12416/9977 | |
dc.identifier.volume | 2869 | en_US |
dc.identifier.wos | WOS:000188096800063 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Springer-verlag Berlin | en_US |
dc.relation.ispartof | 18th International Symposium on Computer and Information Sciences (ISCIS 2003) -- NOV 03-05, 2003 -- ANTALYA, TURKEY | en_US |
dc.relation.ispartofseries | LECTURE NOTES IN COMPUTER SCIENCE | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 2 | |
dc.title | Texture Segmentation Using the Mixtures of Principal Component Analyzers | en_US |
dc.type | Conference Object | en_US |
dc.wos.citedbyCount | 1 | |
dspace.entity.type | Publication |