Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Global stability of local fractional Hénon-Lozi map using fixed point theory

Loading...
Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Amer inst Mathematical Sciences-aims

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

We present an innovative piecewise smooth mapping of the plane as a parametric discrete-time chaotic system that has robust chaos over a share of its significant organization parameters and includes the generalized Henon and Lozi schemes as two excesses and other arrangements as an evolution in between. To obtain the fractal Henon and Lozi system, the generalized Henon and Lozi system is defined by adopting the fractal idea (FHLS). The recommended system's dynamical performances are investigated from many angles, such as global stability in terms of the set of fixed points.

Description

Keywords

Fractional Calculus, Differential Operator, Fractional Differential Equation, Fractal Chaotic, Fractal

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Ibrahim, Rabha W.; Baleanu, D. (2022). "Global stability of local fractional Hénon-Lozi map using fixed point theory", AIMS Mathematics, Vol. 7, No.6, pp.11399-11416.

WoS Q

Q1

Scopus Q

Q1

Source

Volume

7

Issue

6

Start Page

11399

End Page

11416