Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Soft computing technique for a system of fuzzy Volterra integro-differential equations in a Hilbert space

dc.authorid Al-Omari, Shrideh/0000-0001-8955-5552
dc.authorscopusid 56179583700
dc.authorscopusid 14828685700
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Gumah, Ghaleb/Aad-3648-2020
dc.authorwosid Al-Omari, Shrideh/E-5065-2017
dc.contributor.author Gumah, Ghaleb
dc.contributor.author Al-Omari, Shrideh
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2021-01-07T11:43:02Z
dc.date.available 2021-01-07T11:43:02Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Gumah, Ghaleb; Al-Omari, Shrideh] Al Balqa Appl Univ, Fac Engn Technol, Dept Phys & Basic Sci, Amman, Jordan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Eskisehir Yolu 29 Km, TR-06810 Ankara, Turkey; [Baleanu, Dumitru] Inst State Sci, Magurele, Romania en_US
dc.description Al-Omari, Shrideh/0000-0001-8955-5552 en_US
dc.description.abstract In this article, we implement a relatively new computational technique, a reproducing kernel Hilbert space method, for solving a system of fuzzy Volterra integro-differential equations in the Hilbert space circle plus(n)(j=1) (W-2(2) [a, b] circle plus W-2(2) [a, b]). Based on the concept of the reproducing kernel function combined with Gram-Schmidt orthogonalization process, we represent an exact solution in a form of Fourier series in the reproducing kernel Hilbert space circle plus(n)(j=1) (W-2(2) [a, b] circle plus W-2(2) [a, b]). Accordingly, the approximate solution of the system of fuzzy Volterra integro-differential equations is obtained by the n-term intercept of the exact solution and proved to converge to the exact solution. Finally, two numerical examples are presented to illustrate the reliability, appropriateness and efficiency of the method. (C) 2020 IMACS. Published by Elsevier B.V. All rights reserved. en_US
dc.description.publishedMonth 6
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Gumah, Ghaleb; Al-Omari, Shrideh; Baleanu, Dumitru (2020). "Soft computing technique for a system of fuzzy Volterra integro-differential equations in a Hilbert space", Applied Numerical Mathematics, Vol. 152, pp. 310-322. en_US
dc.identifier.doi 10.1016/j.apnum.2019.11.019
dc.identifier.endpage 322 en_US
dc.identifier.issn 0168-9274
dc.identifier.issn 1873-5460
dc.identifier.scopus 2-s2.0-85076459156
dc.identifier.scopusquality Q1
dc.identifier.startpage 310 en_US
dc.identifier.uri https://doi.org/10.1016/j.apnum.2019.11.019
dc.identifier.volume 152 en_US
dc.identifier.wos WOS:000519653600021
dc.identifier.wosquality Q1
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 15
dc.subject Fuzzy Volterra Integro-Differential Equation en_US
dc.subject Fuzzy Derivative en_US
dc.subject Reproducing Kernel Hilbert Space en_US
dc.subject Gram-Schmidt Process en_US
dc.title Soft computing technique for a system of fuzzy Volterra integro-differential equations in a Hilbert space tr_TR
dc.title Soft Computing Technique for a System of Fuzzy Volterra Integro-Differential Equations in a Hilbert Space en_US
dc.type Article en_US
dc.wos.citedbyCount 14
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: