Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Predicting the severity of COVID-19 patients using a multi-threaded evolutionary feature selection algorithm

dc.contributor.authorDeniz, Ayça
dc.contributor.authorKızılöz, Hakan Ezgi
dc.contributor.authorSevinç, Ender
dc.contributor.authorDökeroğlu, Tansel
dc.contributor.authorID234173tr_TR
dc.date.accessioned2024-05-08T08:25:18Z
dc.date.available2024-05-08T08:25:18Z
dc.date.issued2022
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Yazılım Mühendisliği Bölümüen_US
dc.description.abstractThe COVID-19 pandemic has huge effects on the global community and an extreme burden on health systems. There are more than 185 million confirmed cases and 4 million deaths as of July 2021. Besides, the exponential rise in COVID-19 cases requires a quick prediction of the patients' severity for better treatment. In this study, we propose a Multi-threaded Genetic feature selection algorithm combined with Extreme Learning Machines (MG-ELM) to predict the severity level of the COVID-19 patients. We conduct a set of experiments on a recently published real-world dataset. We reprocess the dataset via feature construction to improve the learning performance of the algorithm. Upon comprehensive experiments, we report the most impactful features and symptoms for predicting the patients' severity level. Moreover, we investigate the effects of multi-threaded implementation with statistical analysis. In order to verify the efficiency of MG-ELM, we compare our results with traditional and state-of-the-art techniques. The proposed algorithm outperforms other algorithms in terms of prediction accuracy.en_US
dc.description.publishedMonth6
dc.identifier.citationDeniz, Ayça;...et.al. (2022). "Predicting the severity of COVID-19 patients using a multi-threaded evolutionary feature selection algorithm", Expert Systems, Vol.39, No.5.en_US
dc.identifier.doi10.1111/exsy.12949
dc.identifier.issn2664720
dc.identifier.issue5en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/8182
dc.identifier.volume39en_US
dc.language.isoenen_US
dc.relation.ispartofExpert Systemsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClassificationen_US
dc.subjectCOVID-19en_US
dc.subjectExtreme Learning Machinesen_US
dc.subjectFeature Selectionen_US
dc.subjectMulti-Threaded Computationen_US
dc.titlePredicting the severity of COVID-19 patients using a multi-threaded evolutionary feature selection algorithmtr_TR
dc.titlePredicting the Severity of Covid-19 Patients Using a Multi-Threaded Evolutionary Feature Selection Algorithmen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: