Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Design, analysis and comparison of a nonstandard computational method for the solution of a general stochastic fractional epidemic model

dc.authorid Ahmed, Nauman/0000-0003-1742-585X
dc.authorid Raza, Ali/0000-0002-6443-9966
dc.authorid Macias-Diaz, Jorge Eduardo/0000-0002-7580-7533
dc.authorid Rafiq, Muhammad/0000-0002-2165-3479
dc.authorscopusid 57210525245
dc.authorscopusid 8859747100
dc.authorscopusid 56072492500
dc.authorscopusid 57202493177
dc.authorscopusid 55556543600
dc.authorscopusid 7005872966
dc.authorscopusid 7005872966
dc.authorwosid Ahmad, Muhammad/E-3374-2010
dc.authorwosid Rafiq, Muhammad/Gnw-5095-2022
dc.authorwosid Ahmed, Nauman/Aea-3375-2022
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Raza, Ali/Abe-1951-2021
dc.authorwosid Macias-Diaz, Jorge Eduardo/H-8635-2018
dc.contributor.author Ahmed, Nauman
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Macias-Diaz, Jorge E.
dc.contributor.author Raza, Ali
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Rafiq, Muhammad
dc.contributor.author Iqbal, Zafar
dc.contributor.author Ahmad, Muhammad Ozair
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-03-04T11:15:27Z
dc.date.available 2024-03-04T11:15:27Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [Ahmed, Nauman; Iqbal, Zafar; Ahmad, Muhammad Ozair] Univ Lahore, Dept Math & Stat, Lahore 54000, Pakistan; [Macias-Diaz, Jorge E.] Tallinn Univ, Sch Digital Technol, Dept Math, EE-10120 Tallinn, Estonia; [Macias-Diaz, Jorge E.] Univ Autonoma Aguascalientes, Dept Matemat & Fis, Ave Univ 940,Ciudad Univ, Aguascalientes 20130, Aguascalientes, Mexico; [Raza, Ali] Govt Mulana Zafar Ali Khan Grad Coll Wazirabad, Dept Math, Gujranwala 52250, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest 06530, Romania; [Rafiq, Muhammad] Univ Cent Punjab, Fac Sci, Dept Math, Lahore 54000, Pakistan en_US
dc.description Ahmed, Nauman/0000-0003-1742-585X; Raza, Ali/0000-0002-6443-9966; Macias-Diaz, Jorge Eduardo/0000-0002-7580-7533; Rafiq, Muhammad/0000-0002-2165-3479 en_US
dc.description.abstract Malaria is a deadly human disease that is still a major cause of casualties worldwide. In this work, we consider the fractional-order system of malaria pestilence. Further, the essential traits of the model are investigated carefully. To this end, the stability of the model at equilibrium points is investigated by applying the Jacobian matrix technique. The contribution of the basic reproduction number, R-0, in the infection dynamics and stability analysis is elucidated. The results indicate that the given system is locally asymptotically stable at the disease-free steady-state solution when R-0 < 1. A similar result is obtained for the endemic equilibrium when R-0 > 1. The underlying system shows global stability at both steady states. The fractional-order system is converted into a stochastic model. For a more realistic study of the disease dynamics, the non-parametric perturbation version of the stochastic epidemic model is developed and studied numerically. The general stochastic fractional Euler method, Runge-Kutta method, and a proposed numerical method are applied to solve the model. The standard techniques fail to preserve the positivity property of the continuous system. Meanwhile, the proposed stochastic fractional nonstandard finite-difference method preserves the positivity. For the boundedness of the nonstandard finite-difference scheme, a result is established. All the analytical results are verified by numerical simulations. A comparison of the numerical techniques is carried out graphically. The conclusions of the study are discussed as a closing note. en_US
dc.description.publishedMonth 1
dc.description.sponsorship National Council for Science and Technology of Mexico (CONACYT) [A1-S-45928] en_US
dc.description.sponsorship The corresponding author wishes to acknowledge the financial support from the National Council for Science and Technology of Mexico (CONACYT) through grant A1-S-45928. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Ahmed, Nauman;...et.al. (2022). "Design, analysis and comparison of a nonstandard computational method for the solution of a general stochastic fractional epidemic model", Axioms, Vol.11, No.1. en_US
dc.identifier.doi 10.3390/axioms11010010
dc.identifier.issn 2075-1680
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85121585854
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.3390/axioms11010010
dc.identifier.volume 11 en_US
dc.identifier.wos WOS:000747850600001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 11
dc.subject Stochastic Epidemic Model en_US
dc.subject Malaria Infection en_US
dc.subject Stochastic Generalized Euler en_US
dc.subject Nonstandard Finite-Difference Method en_US
dc.subject Positivity en_US
dc.subject Boundedness en_US
dc.title Design, analysis and comparison of a nonstandard computational method for the solution of a general stochastic fractional epidemic model tr_TR
dc.title Design, Analysis and Comparison of a Nonstandard Computational Method for the Solution of a General Stochastic Fractional Epidemic Model en_US
dc.type Article en_US
dc.wos.citedbyCount 12
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
714.7 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı Sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: