Analyzing Transient Response of the Parallel Rcl Circuit By Using the Caputo–Fabrizio Fractional Derivative
dc.authorid | Rezapour, Shahram/0000-0003-3463-2607 | |
dc.authorscopusid | 57214668182 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 55935081600 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Rezapour, Shahram/N-4883-2016 | |
dc.contributor.author | Alizadeh, Shahram | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Rezapour, Shahram | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2020-05-15T06:48:19Z | |
dc.date.available | 2020-05-15T06:48:19Z | |
dc.date.issued | 2020 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Alizadeh, Shahram; Rezapour, Shahram] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan | en_US |
dc.description | Rezapour, Shahram/0000-0003-3463-2607 | en_US |
dc.description.abstract | In this paper, the transient response of the parallel RCL circuit with Caputo-Fabrizio derivative is solved by Laplace transforms. Also, the graphs of the obtained solutions for the different orders of the fractional derivatives are compared with each other and with the usual solutions. Finally, they are compared with practical and laboratory results. | en_US |
dc.description.publishedMonth | 12 | |
dc.description.sponsorship | Azarbaijan Shahid Madani University | en_US |
dc.description.sponsorship | The first and third authors were supported by Azarbaijan Shahid Madani University. The authors express their gratitude to the dear unknown referees for their helpful suggestions, which improved the final version of this paper. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Alizadeh, S.; Baleanu, D.; Rezapour, S.,"Analyzing Transient Response of the Parallel Rcl Circuit By Using the Caputo–Fabrizio Fractional Derivative",Advances in Difference Equations, Vol. 2020, No. 1, (2020). | en_US |
dc.identifier.doi | 10.1186/s13662-020-2527-0 | |
dc.identifier.issn | 1687-1847 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85078888122 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.uri | https://doi.org/10.1186/s13662-020-2527-0 | |
dc.identifier.volume | 2020 | en_US |
dc.identifier.wos | WOS:000513551300003 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Baleanu, Dumitru | |
dc.language.iso | en | en_US |
dc.publisher | Springeropen | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 141 | |
dc.subject | Caputo-Fabrizio Derivative | en_US |
dc.subject | Fractional Differential | en_US |
dc.subject | Transient Response | en_US |
dc.title | Analyzing Transient Response of the Parallel Rcl Circuit By Using the Caputo–Fabrizio Fractional Derivative | tr_TR |
dc.title | Analyzing Transient Response of the Parallel Rcl Circuit by Using the Caputo-Fabrizio Fractional Derivative | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 132 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |