Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A comprehensive survey on recent metaheuristics for feature selection

dc.contributor.authorDokeroglu, Tansel
dc.contributor.authorDeniz, Ayça
dc.contributor.authorKiziloz, Hakan Ezgi
dc.contributor.authorID234173tr_TR
dc.date.accessioned2024-02-07T07:05:05Z
dc.date.available2024-02-07T07:05:05Z
dc.date.issued2022
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Yazılım Mühendisliği Bölümüen_US
dc.description.abstractFeature selection has become an indispensable machine learning process for data preprocessing due to the ever-increasing sizes in actual data. There have been many solution methods proposed for feature selection since the 1970s. For the last two decades, we have witnessed the superiority of metaheuristic feature selection algorithms, and tens of new ones are being proposed every year. This survey focuses on the most outstanding recent metaheuristic feature selection algorithms of the last two decades in terms of their performance in exploration/exploitation operators, selection methods, transfer functions, fitness value evaluations, and parameter setting techniques. Current challenges of the metaheuristic feature selection algorithms and possible future research topics are examined and brought to the attention of the researchers as well.en_US
dc.description.publishedMonth7
dc.identifier.citationDokeroglu, Tansel; Deniz, Ayça; Kiziloz, Hakan E. (2022). "A comprehensive survey on recent metaheuristics for feature selection", Neurocomputing, Vol.494, pp.269-296.en_US
dc.identifier.doi10.1016/j.neucom.2022.04.083
dc.identifier.endpage296en_US
dc.identifier.issn9252312
dc.identifier.startpage269en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/7124
dc.identifier.volume494en_US
dc.language.isoenen_US
dc.relation.ispartofNeurocomputingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClassificationen_US
dc.subjectFeature Selectionen_US
dc.subjectMachine Learningen_US
dc.subjectMetaheuristic Algorithmsen_US
dc.subjectSurveyen_US
dc.titleA comprehensive survey on recent metaheuristics for feature selectiontr_TR
dc.titleA Comprehensive Survey on Recent Metaheuristics for Feature Selectionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
2.45 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: