Reproducing kernels for harmonic Besov spaces on the ball

No Thumbnail Available

Date

2009-07

Authors

Gergün, Seçil
Kaptanoğlu, H. Turgay
Üreyen, A. Ersin

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier France Editions

Abstract

Besov spaces of harmonic functions on the unit ball of R '' are defined by requiring Sufficiently high-order derivatives of functions lie in harmonic Bergman spaces. We compute the reproducing kernels of those Besov spaces that are Hilbert spaces. The kernels turn out to be weighted infinite sums of zonal harmonics and natural radial fractional derivatives of the Poisson kernel

Description

Keywords

Unit Ball, Holomorphic-Functions, Bergman Spaces, Bloch, Interpolation, Sobolev

Citation

Gergün, S., Kaptanoğlu, H.T., Üreyen, A.E. (2009). Reproducing kernels for harmonic Besov spaces on the ball. Comptes Rendus Mathematique, 347(13-14), 735-738. http://dx.doi.org/10.1016/j.crma.2009.04.016