A fite type result for sequental fractional differintial equations

dc.contributor.authorAbdeljawad, Thabet
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorJarad, Fahd
dc.contributor.authorMustafa, Octavian G.
dc.contributor.authorTrujillo, J. J.
dc.contributor.departmentÇankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümütr_TR
dc.date.accessioned2016-06-10T08:26:09Z
dc.date.available2016-06-10T08:26:09Z
dc.date.issued2010-06
dc.description.abstractGiven the solution f of the sequential fractional differential equation aD(t)(alpha)(aD(t)(alpha) f) + P(t)f = 0, t is an element of [b, a], where -infinity < a < b < c < + infinity, alpha is an element of (1/2, 1) and P : [a, + infinity) -> [0, P(infinity)], P(infinity) < + infinity, is continuous. Assume that there exist t(1),t(2) is an element of [b, c] such that f(t(1)) = (aD(t)(alpha))(t(2)) = 0. Then, we establish here a positive lower bound for c - a which depends solely on alpha, P(infinity). Such a result might be useful in discussing disconjugate fractional differential equations and fractional interpolation, similarly to the case of (integer order) ordinary differential equationstr_TR
dc.identifier.citationAbdeljavad, T...et al. (2010). A fite type result for sequental fractional differintial equations. Dynamic System and Applications, 19(2), 383-394.tr_TR
dc.identifier.endpage394tr_TR
dc.identifier.issn1056-2176
dc.identifier.issue2tr_TR
dc.identifier.startpage383tr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12416/1066
dc.identifier.volume19tr_TR
dc.language.isoengtr_TR
dc.publisherDynamic Publishertr_TR
dc.relation.journalDynamic System and Applicationstr_TR
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.titleA fite type result for sequental fractional differintial equationstr_TR
dc.typearticletr_TR

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: