A fite type result for sequental fractional differintial equations
dc.contributor.author | Abdeljawad, Thabet | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.author | Mustafa, Octavian G. | |
dc.contributor.author | Trujillo, J. J. | |
dc.contributor.department | Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü | tr_TR |
dc.date.accessioned | 2016-06-10T08:26:09Z | |
dc.date.available | 2016-06-10T08:26:09Z | |
dc.date.issued | 2010-06 | |
dc.description.abstract | Given the solution f of the sequential fractional differential equation aD(t)(alpha)(aD(t)(alpha) f) + P(t)f = 0, t is an element of [b, a], where -infinity < a < b < c < + infinity, alpha is an element of (1/2, 1) and P : [a, + infinity) -> [0, P(infinity)], P(infinity) < + infinity, is continuous. Assume that there exist t(1),t(2) is an element of [b, c] such that f(t(1)) = (aD(t)(alpha))(t(2)) = 0. Then, we establish here a positive lower bound for c - a which depends solely on alpha, P(infinity). Such a result might be useful in discussing disconjugate fractional differential equations and fractional interpolation, similarly to the case of (integer order) ordinary differential equations | tr_TR |
dc.identifier.citation | Abdeljavad, T...et al. (2010). A fite type result for sequental fractional differintial equations. Dynamic System and Applications, 19(2), 383-394. | tr_TR |
dc.identifier.endpage | 394 | tr_TR |
dc.identifier.issn | 1056-2176 | |
dc.identifier.issue | 2 | tr_TR |
dc.identifier.startpage | 383 | tr_TR |
dc.identifier.uri | http://hdl.handle.net/20.500.12416/1066 | |
dc.identifier.volume | 19 | tr_TR |
dc.language.iso | eng | tr_TR |
dc.publisher | Dynamic Publisher | tr_TR |
dc.relation.journal | Dynamic System and Applications | tr_TR |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.title | A fite type result for sequental fractional differintial equations | tr_TR |
dc.type | article | tr_TR |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: