Discrete mittag–leffler functions in fractional calculus

dc.contributor.authorBenli, Betül
dc.contributor.departmentÇankaya Üniversitesi, Fen Bilimleri Enstitüsü, Matematik ve Bilgisayar Bölümütr_TR
dc.date.accessioned2014-11-19T08:55:00Z
dc.date.available2014-11-19T08:55:00Z
dc.date.issued2011-07
dc.description.abstractA speci c type of Caputo q{fractional di erential equations has been solved. The solutions have been expressed via the generalized q- Mittag Le er functions which were comprised a while ago. The method of successive approximation has been used to reach the solutions. Mittag-Le er function makes q-analog, which was proposed by Kilbas and Saigo before, generalized. In addition to this, discrete Mittag-Le er functions and q-analog Mittag- Le er functions, concluded by T. Abdeljawad and D.Baleanu recently, have been discussed in the content of this thesis. Keywords: Fractional Sums, Fractional Di erences, Mittag{Le er Function, Q{Mittag-Le er Function, Discrete Mittag{Le er Function, Caputo Q{Fractional Integral, Caputo Q{Fractional Derivatives, Time Scale, Euler Lagrange Equation.tr_TR
dc.description.abstractA specific type of Caputo q–fractional differential equations has been solved. The solutions have been expressed via the generalized q- Mittag Leffler functions which were comprised a while ago. The method of successive approximation has been used to reach the solutions. Mittag-Leffler function makes q-analog, which was proposed by Kilbas and Saigo before, generalized. In addition to this, discrete Mittag-Leffler functions and q-analog Mittag- Leffler functions, concluded by T. Abdeljawad and D.Baleanu recently, have been discussed in the content of this thesis.tr_TR
dc.description.abstractBelirli bir türdeki Caputo q–kesirli diferansiyel denklemler ¸cözülmüstür. Cözümler kısa bir süre ¨önce oluşturulan genelleştirilmiş Mittag–Leffler fonksiyonları ile ifade edilmiştir. Bunlara ulaşmak için ardışık yaklaşım yöntemi kullanılmıştır. Ortaya çıkan Mittag–Leffler fonksiyonu daha önceden Kilbas ve Saigo’nun öne sürdüğü q–analoğu genelleştirmektedir. Ayrıca, bu tezdeki içerikte çok yakın zamanlarda T.Abdeljawad ve D.Baleanu tarafından sonuçlandırılmış ayrık Mittag– Leffler fonksiyonları ve q–analog Mittag–Leffler fonksiyonları ele alınmaktadır.tr_TR
dc.identifier.citationBENLİ, B. (2011). Discrete mittag–leffler functions in fractional calculus. Yayımlanmamış yüksek lisans tezi. Ankara: Çankaya Üniversitesi Fen Bilimleri Enstitüsütr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12416/238
dc.language.isoentr_TR
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectFractional Sumstr_TR
dc.subjectFractional Differencestr_TR
dc.subjectMittag–Leffler Functiontr_TR
dc.subjectQ–Mittag-Leffler Functiontr_TR
dc.subjectDiscrete Mittag–Leffler Functiontr_TR
dc.subjectCaputo Q–Fractional Integraltr_TR
dc.subjectCaputo Q–Fractional Derivativestr_TR
dc.subjectTime Scaletr_TR
dc.subjectEuler Lagrange Equationtr_TR
dc.titleDiscrete mittag–leffler functions in fractional calculustr_TR
dc.title.alternativeKesirli kalkulus de ayrık mittag–leffler fonksiyonlarıtr_TR
dc.typeThesistr_TR

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Benli, Betül.pdf
Size:
21.23 MB
Format:
Adobe Portable Document Format
Description:
Yazar sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: