A common fixed point theorem of a Gregus type on convex cone metric spaces
dc.contributor.author | Abdeljawad, Thabet | |
dc.contributor.author | Karapınar, Erdal | |
dc.contributor.authorID | 19184 | tr_TR |
dc.contributor.department | Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü | tr_TR |
dc.date.accessioned | 2016-06-22T07:36:39Z | |
dc.date.available | 2016-06-22T07:36:39Z | |
dc.date.issued | 2011-05 | |
dc.description.abstract | The result of Ciric [1] on a common fixed point theorem of Gregus-type on metric spaces is extended to the class of cone metric spaces. Namely, a common fixed point theorem is proved in s-convex cone metric spaces under the normality of the cone and another common fixed point theorem is proved in convex cone metric spaces under the assumption that the cone is strongly minihedral | tr_TR |
dc.identifier.citation | Abdeljawad, T., Karapınar, E. (2011). A common fixed point theorem of a Gregus type on convex cone metric spaces. Journal of Computational Analysis and Applications, 13(4), 609-621. | tr_TR |
dc.identifier.endpage | 621 | tr_TR |
dc.identifier.issn | 1521-1398 | |
dc.identifier.issue | 4 | tr_TR |
dc.identifier.startpage | 609 | tr_TR |
dc.identifier.uri | http://hdl.handle.net/20.500.12416/1132 | |
dc.identifier.volume | 13 | tr_TR |
dc.language.iso | eng | tr_TR |
dc.publisher | Eudoxus Press | tr_TR |
dc.relation.journal | Journal of Computational Analysis and Applications | tr_TR |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Cone Metric | tr_TR |
dc.subject | Strongly Minihedral | tr_TR |
dc.subject | Normal Cone | tr_TR |
dc.subject | Cone Banach | tr_TR |
dc.subject | Convex | tr_TR |
dc.subject | S-Convex | tr_TR |
dc.subject | Common Fixed Point | tr_TR |
dc.title | A common fixed point theorem of a Gregus type on convex cone metric spaces | tr_TR |
dc.type | article | tr_TR |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: