Multi-objective software project cost estimation using recent machine learning approaches

dc.contributor.authorDerya, Doğay
dc.contributor.departmentÇankaya Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Bölümütr_TR
dc.date.accessioned2024-02-12T13:07:19Z
dc.date.available2024-02-12T13:07:19Z
dc.date.issued2023
dc.description.abstractYazılım projeleri, çeşitli sektörlerdeki şirketlerin günlük operasyonlarında dahi günden güne stratejik önem kazanmaktadır. Artan ihtiyaçla birçok şirket gerek kendi bünyesinde, gerekse farklı sektörlerin ihtiyacına yönelik olarak projeler yaratarak yazılımlar geliştirmektedir. Yazılım projeleri için ihtiyaç duyulan işgücünü doğru tahmin etmek, proje maliyetlerini doğru tahmin etmek ve zamanında tamamlanmasını sağlamak için çok önemlidir. 1970'lerden bu yana, yazılım efor tahmini alanı, literatürde kapsamlı araştırmaların konusu olmuştur. Başlangıçta uzman görüşü gibi algoritmik olmayan yöntemler kullanılırken, sorunlar karmaşıklaştıkça, teknoloji ve donanım özellikleri çeşitlendikçe farklı çözüm yaklaşımlarına olan ihtiyaç da ortaya çıkmıştır. Bu zorlukların üstesinden gelmek için regresyon ve model tabanlı tahmin gibi algoritmik yöntemler geliştirilmiştir. Son yıllarda ise, özellikle son on yılda olmak üzere teknolojideki gelişmelerle birlikte, Makine Öğrenimi tabanlı modelleri ve Yapay Zekayı yazılım maliyet tahminine uygulamaya yönelik artan bir ilgi olmuştur. Bu çalışmanın odak noktası, yazılım projeleri bağlamında Makine Öğrenimi tabanlı tahmin yöntemlerini keşfetmektir. Amaç, bu yöntemlerin yazılım maliyet tahminini nasıl iyileştirebileceğini araştırarak, etkinliklerini analiz etmektir.tr_TR
dc.description.abstractSoftware projects are gaining strategic importance day by day, even in the daily operations of companies in various sectors. With the increasing need, many companies develop software by creating projects both within their own structure and for the needs of different sectors. Accurately estimating the workforce needed for software projects is crucial to accurately estimating project costs and ensuring timely completion. Since the 1970s, the field of software effort estimation has been the subject of extensive research in the literature. While non-algorithmic methods such as expert opinion were used in the beginning, as the problems became more complex and technology and hardware features diversified, the need for different solution approaches emerged. To overcome these difficulties, algorithmic methods such as regression and model-based estimation have been developed. In recent years, however, with advances in technology, especially in the last decade, there has been an escalating interest in applying Machine Learning-based models and Artificial Intelligence to software cost estimation. The focus of this study is to explore Machine Learning based prediction methods in the context of software projects. The aim is to analyze their effectiveness by investigating how these methods can improve software cost estimation.tr_TR
dc.identifier.citationDerya, Doğay (2023). Multi-objective software project cost estimation using recent machine learning approaches / Güncel makine öğrenme yaklaşımları ile çok amaçlı yazılım projesi maliyet tahminlemesi. Yayımlanmış yüksek lisans tezi. Ankara: Çankaya Üniversitesi, Fen Bilimleri Enstitüsü.tr_TR
dc.identifier.endpage120tr_TR
dc.identifier.startpage1tr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12416/7175
dc.language.isoengtr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectSoftware Cost Estimationtr_TR
dc.subjectSoftware Effort Estimationtr_TR
dc.subjectArtificial Intelligencetr_TR
dc.subjectMachine Learningtr_TR
dc.subjectFeature Selectiontr_TR
dc.subjectYazılım Maliyet Tahminitr_TR
dc.subjectYazılım Efor Tahminitr_TR
dc.subjectYapay Zekatr_TR
dc.subjectMakine Öğrenimitr_TR
dc.subjectÖzellik Seçimitr_TR
dc.titleMulti-objective software project cost estimation using recent machine learning approachestr_TR
dc.title.alternativeGüncel makine öğrenme yaklaşımları ile çok amaçlı yazılım projesi maliyet tahminlemesitr_TR
dc.typemasterThesistr_TR

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thesis.pdf
Size:
1.86 MB
Format:
Adobe Portable Document Format
Description:
Yazar sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: