A fractional finite difference inclusion

dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorRezapour, Shahram
dc.contributor.authorSalehi, Saeid
dc.contributor.departmentÇankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümütr_TR
dc.date.accessioned2018-09-26T08:49:57Z
dc.date.available2018-09-26T08:49:57Z
dc.date.issued2016-05
dc.description.abstractIn this manuscript we investigated the fractional finite difference inclusion Delta(mu)(mu-2) x(t) is an element of F(t, x(t), Delta x(t)) via the boundary conditions Delta x(b + mu) = A and x(mu - 2) = B, where 1 <= 2, A,B is an element of R and F :N-mu-2(b+mu+2) x R -> 2(R) is a compact valued multifunction.tr_TR
dc.identifier.citationBaleanu, D., Rezapour, S., Salehi, S. (2016). A fractional finite difference inclusion. Journal of Computational Analysis and Applications, 20(5), 834-842.tr_TR
dc.identifier.endpage842tr_TR
dc.identifier.issn1521-1398
dc.identifier.issue5tr_TR
dc.identifier.startpage834tr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12416/1786
dc.identifier.volume20tr_TR
dc.language.isoengtr_TR
dc.publisherEudoxus Presstr_TR
dc.relation.journalJournal of Computational Analysis and Applicationstr_TR
dc.rightsinfo:eu-repo/semantics/embargoedAccesstr_TR
dc.subjectFixed Point Of Multifunctiontr_TR
dc.subjectFractional Finite Difference Inclusiontr_TR
dc.subjectHausdorff Metrictr_TR
dc.titleA fractional finite difference inclusiontr_TR
dc.typearticletr_TR

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru.pdf
Size:
4.35 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: