A fractional finite difference inclusion
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Rezapour, Shahram | |
dc.contributor.author | Salehi, Saeid | |
dc.contributor.department | Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü | tr_TR |
dc.date.accessioned | 2018-09-26T08:49:57Z | |
dc.date.available | 2018-09-26T08:49:57Z | |
dc.date.issued | 2016-05 | |
dc.description.abstract | In this manuscript we investigated the fractional finite difference inclusion Delta(mu)(mu-2) x(t) is an element of F(t, x(t), Delta x(t)) via the boundary conditions Delta x(b + mu) = A and x(mu - 2) = B, where 1 <= 2, A,B is an element of R and F :N-mu-2(b+mu+2) x R -> 2(R) is a compact valued multifunction. | tr_TR |
dc.identifier.citation | Baleanu, D., Rezapour, S., Salehi, S. (2016). A fractional finite difference inclusion. Journal of Computational Analysis and Applications, 20(5), 834-842. | tr_TR |
dc.identifier.endpage | 842 | tr_TR |
dc.identifier.issn | 1521-1398 | |
dc.identifier.issue | 5 | tr_TR |
dc.identifier.startpage | 834 | tr_TR |
dc.identifier.uri | http://hdl.handle.net/20.500.12416/1786 | |
dc.identifier.volume | 20 | tr_TR |
dc.language.iso | eng | tr_TR |
dc.publisher | Eudoxus Press | tr_TR |
dc.relation.journal | Journal of Computational Analysis and Applications | tr_TR |
dc.rights | info:eu-repo/semantics/embargoedAccess | tr_TR |
dc.subject | Fixed Point Of Multifunction | tr_TR |
dc.subject | Fractional Finite Difference Inclusion | tr_TR |
dc.subject | Hausdorff Metric | tr_TR |
dc.title | A fractional finite difference inclusion | tr_TR |
dc.type | article | tr_TR |