Numerical computation of integrals in higher dimensions

dc.contributor.authorBaydar, Hakan
dc.contributor.departmentÇankaya Üniversitesi, Fen Bilimleri Enstitüsü, Matematik Bölümütr_TR
dc.date.accessioned2023-07-27T12:08:41Z
dc.date.available2023-07-27T12:08:41Z
dc.date.issued2006
dc.description.abstractf (x)dx şeklindeki belirli integralin nümerik olarak yaklaştırılması işin herhangis u s cbir method kullanılmasına tümlev alma denir. Amaş en az fonksiyon değerlendirimiu c gile verilen duyarlılık seviyesinde sonuş elde etmektir.cNümerik bir integral probleminin zorluğunu kontrol eden faktürler integralin boyutuu g ove fonksiyonun pürüzsüzlüğudür.u u u ug ü uHer tümlev alma methodu, integrali alınan f foksiyonunu sınırlı sayıda noktadau(absis veya tümlev alınan nokta) hesaplamaya dayanır, daha sonra bu değerler biru gyaklaştırım elde etmede kullanılır. Genelde bu ağırlıklı ortalama almayı gerektirir.s gHedef hangi noktalarda fonksiyonun hesaplanacağı ve hangi ağırlıkların kullanıla-g gcağıdır, üyle ki integrali alınan fonsiyonlarda en geniş sınıfta maksimum performansg o selde edilsin.Bu araştırmada integrallerin nümerik yaklaştırılmasında kullanılan Monte Carlos u sve Newton-Cotes metodları güzden geşirilmiştir ve MATLAB ile yazılmış 7. dereceyeo c s skadar integralleri herhangi bir bülgede hesaplayabilen yeni programlar işermektedir.o cBu şalışmada amaş metodları karşılaştırmak ve kendi yazdığımız kod ile bazıcs c ss gyaklaştırım sonuşlarını vermektedir.s ctr_TR
dc.description.abstractQuadrature refers to any method for numerically approximating the value of deï¬ -bnite integral a f (x)dx. The goal is to attain a given level of precision with the fewestfunction evaluations.The factors that control the diï¬ culty of a numerical integration problem are thedimension of the integral and the smoothness of the integrand f .Any quadrature method relies on evaluating the integrand f on a ï¬ nite set of points(called the abscissas or quadrature points), and after processing these evaluations toproduce an approximation to the integral. Usually this involves taking a weightedaverage.The goal is to determine which points to evaluate and what weight to use so as tomaximize performance over a broad class of integrands.This study reviews Monte Carlo and Newton-Cotes methods of numerical approx-imation of integrals on both rectangular and nonrectangular regions and containsnew routines that can evaluate integrals up to 7 dimensions over arbitrary regions inMATLAB.The work aims to compare the methods and give some approximation results usingour self-written code.tr_TR
dc.identifier.citationBaydar, Hakan (2006). Numerical computation of integrals in higher dimensions / Yüksek boyutlu integrallerin nümerik hesaplanması. Yayımlanmış yüksek lisans tezi. Ankara: Çankaya Üniversitesi, Fen Bilimleri Enstitüsü.tr_TR
dc.identifier.endpage68tr_TR
dc.identifier.startpage1tr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12416/6546
dc.language.isoengtr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.titleNumerical computation of integrals in higher dimensionstr_TR
dc.title.alternativeYüksek boyutlu integrallerin nümerik hesaplanmasıtr_TR
dc.typemasterThesistr_TR

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thesis.pdf
Size:
51.99 MB
Format:
Adobe Portable Document Format
Description:
Yazar sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: