A caputo fractional order boundary value problem with integral boundary conditions

dc.contributor.authorBabakhani, Azizollah
dc.contributor.authorAbdeljawad, Thabet
dc.contributor.departmentÇankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümütr_TR
dc.date.accessioned2017-03-14T08:37:52Z
dc.date.available2017-03-14T08:37:52Z
dc.date.issued2013-05
dc.description.abstractIn this paper, we discuss existence and uniqueness of solutions to nonlinear fractional order ordinary differential equations with integral boundary conditions in an ordered Banach space. We use the Caputo fractional differential operator and the nonlinearity depends on the fractional derivative of an unknown function. The nonlinear alternative of the Leray- Schauder type Theorem is the main tool used here to establish the existence and the Banach contraction principle to show the uniqueness of the solution under certain conditions. The compactness of solutions set is also investigated and an example is included to show the applicability of our results.tr_TR
dc.identifier.citationBabakhani,A., Abdeljawad, T. (2013). A caputo fractional order boundary value problem with integral boundary conditions. Journal of Computational Analysis and Application, 15(4), 753-763.tr_TR
dc.identifier.endpage763tr_TR
dc.identifier.issn1521-1398
dc.identifier.issue4tr_TR
dc.identifier.startpage753tr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12416/1459
dc.identifier.volume15tr_TR
dc.language.isoengtr_TR
dc.publisherEudoxus Presstr_TR
dc.relation.journalJournal of Computational Analysis and Applicationtr_TR
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectBoundary Value Problemtr_TR
dc.subjectDifferential Equationstr_TR
dc.subjectIntegral Boundary Conditionstr_TR
dc.subjectFixed Pointtr_TR
dc.titleA caputo fractional order boundary value problem with integral boundary conditionstr_TR
dc.typearticletr_TR

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: