Monotonicity results for fractional difference operators with discrete exponential kernels

dc.contributor.authorAbdeljawad, Thabet
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorID56389tr_TR
dc.contributor.authorID143529tr_TR
dc.contributor.departmentÇankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik - Bilgisayar Bölümütr_TR
dc.date.accessioned2019-12-16T13:28:45Z
dc.date.available2019-12-16T13:28:45Z
dc.date.issued2017-03-09
dc.description.abstractWe prove that if the Caputo-Fabrizio nabla fractional difference operator ((CFR) (a-1)del(alpha) y)(t) of order 0 < alpha <= 1 and starting at a -1 is positive for t = a, a + 1,..., then y(t) is a-increasing. Conversely, if y(t) is increasing and y(a) >= 0, then ((CFR) (a-1)del(alpha)y)(t) >= 0. A monotonicity result for the Caputo-type fractional difference operator is proved as well. As an application, we prove a fractional difference version of the mean-value theorem and make a comparison to the classical discrete fractional case.tr_TR
dc.identifier.citationAbdeljawad, Thabet; Baleanu, Dumitru (2017). Monotonicity results for fractional difference operators with discrete exponential kernels, Advances in Difference Equations.tr_TR
dc.identifier.issn1687-1847
dc.identifier.urihttp://hdl.handle.net/20.500.12416/2163
dc.language.isoengtr_TR
dc.publisherSpringer International Publishing AGtr_TR
dc.relation.isversionof10.1186/s13662-017-1126-1tr_TR
dc.relation.journalAdvances in Difference Equationstr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectDiscrete Exponential Kerneltr_TR
dc.subjectCaputo Fractional Differencetr_TR
dc.subjectRiemann Fractional Differencetr_TR
dc.subjectDiscrete Fractional Mean Value Theoremtr_TR
dc.titleMonotonicity results for fractional difference operators with discrete exponential kernelstr_TR
dc.typearticletr_TR

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu,Dumitru; Abdeljawad, Thabet.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: