A fractional derivative inclusion problem via an integral boundary condition
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Moghaddam, Mehdi | |
dc.contributor.author | Mohammadi, Hakimeh | |
dc.contributor.author | Rezapour, Shahram | |
dc.contributor.department | Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü | tr_TR |
dc.date.accessioned | 2018-09-26T07:13:08Z | |
dc.date.available | 2018-09-26T07:13:08Z | |
dc.date.issued | 2016-09 | |
dc.description.abstract | We investigate the existence of solutions for the fractional differential inclusion (c)D(alpha)x(t) is an element of F(t, x(t)) (equipped with the boundary value problems x(0) = 0 and x(1) = integral(eta)(0) x(s)ds, where 0 < eta < 1, 1 < alpha <= 2, D-c(alpha) is the standard Caputo differentiation and F : [0, 1] x R -> 2(R) is a compact valued multifunction. An illustrative example is also discussed. | tr_TR |
dc.identifier.citation | Baleanu, D...et al. (2016). A fractional derivative inclusion problem via an integral boundary condition. Journal of Computational Analysis and Applications, 21(3), 504-514. | tr_TR |
dc.identifier.endpage | 514 | tr_TR |
dc.identifier.issn | 1521-1398 | |
dc.identifier.issue | 3 | tr_TR |
dc.identifier.startpage | 504 | tr_TR |
dc.identifier.uri | http://hdl.handle.net/20.500.12416/1784 | |
dc.identifier.volume | 21 | tr_TR |
dc.language.iso | eng | tr_TR |
dc.publisher | Eudoxus Press | tr_TR |
dc.relation.journal | Journal of Computational Analysis and Applications | tr_TR |
dc.rights | info:eu-repo/semantics/closedAccess | tr_TR |
dc.subject | Fixed Point | tr_TR |
dc.subject | Fractional Differential Inclusion | tr_TR |
dc.subject | Integral Boundary Value Problem | tr_TR |
dc.title | A fractional derivative inclusion problem via an integral boundary condition | tr_TR |
dc.type | article | tr_TR |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: