Mustafa, Octavian G.O'Regan, DonalBaleanu, Dumitru02.02. Matematik02. Fen-Edebiyat Fakültesi01. Çankaya Üniversitesi2020-05-022025-09-182020-05-022025-09-182015Baleanu, Dumitru; Mustafa, Octavian G.; O'Regan, Donal, "A Kamenev-Type Oscillation Result For a Linear (1+Alpha)-Order Fractional Differential Equation", Applied Mathematics and Computation, 259, pp. 374-378, (2015).0096-30031873-5649https://doi.org/10.1016/j.amc.2015.02.045https://hdl.handle.net/20.500.12416/14797We investigate the eventual sign changing for the solutions of the linear equation (x((alpha)))' + q(t)x = t >= 0, when the functional coefficient q satisfies the Kamenev-type restriction lim sup 1/t epsilon integral(t)(to) (t - s)epsilon q(s)ds = +infinity for some epsilon > 2; t(0) > 0. The operator x((alpha)) is the Caputo differential operator and alpha is an element of (0, 1). (C) 2015 Elsevier Inc. All rights reserved.eninfo:eu-repo/semantics/closedAccessFractional Differential EquationOscillatory SolutionCaputo Differential OperatorRiccati InequalityAveraging Of CoefficientsA Kamenev-Type Oscillation Result for a Linear (1+α)-Order Fractional Differential EquationA Kamenev-Type Oscillation Result For a Linear (1+Alpha)-Order Fractional Differential EquationArticle10.1016/j.amc.2015.02.0452-s2.0-84924870505