Golmankhaneh, Alireza K.Baleanu, DumitruYang, Xiao-JunBaleanu, D.Matematik2025-09-232025-09-232015Golmankhaneh, A.K., Yang, X.J., Baleanu, D. (2015). Einstein field equations within local fractional calculus. Romanian Journal of Physics, 60(1-2), 22-31.1221-146Xhttps://hdl.handle.net/20.500.12416/15465Yang, Xiao-Jun/0000-0003-0009-4599In this paper, we introduce the local fractional Christoffel index symbols of the first and second kind. The divergence of a local fractional contravariant vector and the curl of local fractional covariant vector are defined. The fractional intrinsic derivative is given. The local fractional Riemann-Christoffel and Ricci tensors are obtained. Finally, the Einstein tensor and Einstein field are generalized by involving the fractional derivatives. Illustrative examples are presented.eninfo:eu-repo/semantics/closedAccessLocal Fractional Christoffel IndexLocal Fractional Riemann-Christoffel TensorLocal Fractional Ricci TensorLocal Fractional Einstein FieldEinstein Field Equations Within Local Fractional CalculusEinstein field equations within local fractional calculusArticle2-s2.0-84923224361