Mohammed, Pshtiwan OthmanSrivastava, Hari MohanBalea, ItruJan, RashidAbualnaja, Khadijah M.2025-05-092025-05-0920222227-7390https://doi.org/10.3390/math10142433https://hdl.handle.net/20.500.12416/9515Srivastava, Hari M./0000-0002-9277-8092; M. Abualnaja, Khadijah/0000-0002-2908-1807; Mohammed, Pshtiwan/0000-0001-6837-8075; Jan, Rashid/0000-0001-9709-7045Positivity analysis is used with some basic conditions to analyse monotonicity across all discrete fractional disciplines. This article addresses the monotonicity of the discrete nabla fractional differences of the Riemann-Liouville type by considering the positivity of ((RL)(b0)del(theta)g)(z) combined with a condition on g(b(0)+2), g(b(0)+3) and g(b(0)+4), successively. The article ends with a relationship between the discrete nabla fractional and integer differences of the Riemann-Liouville type, which serves to show the monotonicity of the discrete fractional difference ((RL)(b0)del(theta)g)(z).eninfo:eu-repo/semantics/openAccessDiscrete Fractional CalculusDiscrete Nabla Riemann-Liouville Fractional DifferencesMonotonicity AnalysisMonotonicity Results for Nabla Riemann-Liouville Fractional DifferencesArticle101410.3390/math101424332-s2.0-85136175360WOS:000832370400001Q1Q2