Rezapour, ShahramSalehi, SaeidBaleanu, Dumitru02.02. Matematik02. Fen-Edebiyat Fakültesi01. Çankaya Üniversitesi2017-03-172025-09-182017-03-172025-09-182015Baleanu, D., Rezapour, S., Salehi, S. (2015). On the existence of solutions for a fractional finite difference inclusion via three points boundary conditions. Advance in Difference Equations. http://dx.doi.org/10.1186/s13662-015-0559-71687-1847https://doi.org/10.1186/s13662-015-0559-7https://hdl.handle.net/123456789/11273In this paper, we discussed the existence of solutions for the fractional finite difference inclusion Delta(nu)x(t) is an element of F(t, x(t), Delta x(t), Delta(2)x(t)) via the boundary value conditions xi x(nu - 3) + beta Delta x(nu - 3) = 0, x(eta) = 0, and gamma x(b + nu) + delta Delta x(b + nu) = 0, where eta is an element of N-nu-2(b+nu-1), 2 < nu < 3, and F : N-nu-3(b+nu+1) x R x R x R -> 2(R) is a compact valued multifunction.eninfo:eu-repo/semantics/openAccessFixed PointFractional Finite Difference InclusionThree Points Boundary ConditionsOn the Existence of Solutions for a Fractional Finite Difference Inclusion Via Three Points Boundary ConditionsOn the existence of solutions for a fractional finite difference inclusion via three points boundary conditionsArticle10.1186/s13662-015-0559-72-s2.0-84938680493