Vo Van AuLe Dinh LongBaleanu, DumitruNguyen Huy TuanNguyen Anh Triet02.02. Matematik02. Fen-Edebiyat Fakültesi01. Çankaya Üniversitesi2021-01-282025-09-182021-01-282025-09-182020Triet, Nguyen Anh...et al. (2020). "Regularization of a terminal value problem for time fractional diffusion equation", Mathematical Methods in the Applied Sciences, Vol. 43, No. 6, pp. 3850-3878.0170-42141099-1476https://doi.org/10.1002/mma.6159https://hdl.handle.net/20.500.12416/14145Le Dinh, Long/0000-0001-8805-4588; Au, Vo Van/0000-0002-7744-0827; Nguyen Huy, Tuan/0000-0002-6962-1898In this article, we study an inverse problem with inhomogeneous source to determine an initial data from the time fractional diffusion equation. In general, this problem is ill-posed in the sense of Hadamard, so the quasi-boundary value method is proposed to solve the problem. In the theoretical results, we propose a priori and a posteriori parameter choice rules and analyze them. Finally, two numerical results in the one-dimensional and two-dimensional case show the evidence of the used regularization method.eninfo:eu-repo/semantics/closedAccessFractional Diffusion EquationInverse ProblemRegularizationRiemann-Lioville Fractional DerivativeRegularization of a Terminal Value Problem for Time Fractional Diffusion EquationRegularization of a terminal value problem for time fractional diffusion equationArticle10.1002/mma.6159