Bhrawy, A. H.Baleanu, DumitruHafez, R. M.Alzahrani, E. O.Baleanu, D.Alzahrani, A. A.Matematik2025-09-232025-09-232015Bhrawy, A.H...et al. (2015). Generalized Laguerre-Gauss-Radau scheme for first order hyperbolic equations on semi-infinite domains. Romanian Journal of Physics, 60(7-8), 918-934.1221-146Xhttps://hdl.handle.net/20.500.12416/15526Alzahrani, Ebraheem/0000-0003-2413-0355; Hafez, Ramy/0000-0001-9533-3171In this article, we develop a numerical approximation for first-order hyperbolic equations on semi-infinite domains by using a spectral collocation scheme. First, we propose the generalized Laguerre-Gauss-Radau collocation scheme for both spatial and temporal discretizations. This in turn reduces the problem to the obtaining of a system of algebraic equations. Second, we use a Newton iteration technique to solve it. Finally, the obtained results are compared with the exact solutions, highlighting the performance of the proposed numerical method.eninfo:eu-repo/semantics/closedAccessFirst-Order Hyperbolic EquationsTwo-Dimensional Hyperbolic EquationsCollocation MethodGeneralized Laguerre-Gauss-Radau QuadratureGeneralized Laguerre-Gauss Scheme for First Order Hyperbolic Equations on Semi-Infinite DomainsGeneralized Laguerre-Gauss-Radau scheme for first order hyperbolic equations on semi-infinite domainsArticle2-s2.0-84941633855