Baleanu, DumitruBaleanu, DumitruMustafa, Octavian G.O'Regan, Donal2017-03-292017-03-292015Baleanu, D., Mustafa, O.G., O'Regan, D. (2015). A Kamenev-type oscillation result for a linear (1+alpha)-order fractional differential equation. Applied Mathematics&Computation, 259, 374-378. http://dx.doi.org/10.1016/j.amc.2015.02.0450096-3003https://hdl.handle.net/20.500.12416/1517We investigate the eventual sign changing for the solutions of the linear equation (x((alpha)))' + q(t)x = t >= 0, when the functional coefficient q satisfies the Kamenev-type restriction lim sup 1/t epsilon integral(t)(to) (t - s)epsilon q(s)ds = +infinity for some epsilon > 2; t(0) > 0. The operator x((alpha)) is the Caputo differential operator and alpha is an element of (0, 1)eninfo:eu-repo/semantics/closedAccessFractional Differential EquationOscillatory SolutionCaputo Differential OperatorRiccati InequalityAveraging Of CoefficientsA Kamenev-type oscillation result for a linear (1+alpha)-order fractional differential equationA Kamenev-Type Oscillation Result for a Linear (1+alpha)-Order Fractional Differential EquationArticle25937437810.1016/j.amc.2015.02.045