Ulku, IremTöreyin, Behçet UğurToreyin, Behcet UgurElektrik-Elektronik Mühendisliği2017-03-092017-03-092015Ülkü, İ., Töreyin, B.U. (2015). Sparse coding of hyperspectral imagery using online learning. Signal Image And Video Processing, 9(4), 959-966. http://dx.doi.org/10.1007/s11760-015-0753-91863-17031863-1711https://doi.org/10.1007/s11760-015-0753-9Toreyin, Behcet Ugur/0000-0003-4406-2783Sparse coding ensures to express the data in terms of a few nonzero dictionary elements. Since the data size is large for hyperspectral imagery, it is reasonable to use sparse coding for compression of hyperspectral images. In this paper, a hyperspectral image compression method is proposed using a discriminative online learning-based sparse coding algorithm. Compression and anomaly detection tests are performed on hyperspectral images from the AVIRIS dataset. Comparative rate-distortion analyses indicate that the proposed method is superior to the state-of-the-art hyperspectral compression techniques.eninfo:eu-repo/semantics/closedAccessSparse CodingHyperspectral ImageryAnomaly DetectionOnline LearningSparse coding of hyperspectral imagery using online learningSparse Coding of Hyperspectral Imagery Using Online LearningArticle9495996610.1007/s11760-015-0753-92-s2.0-84925500335WOS:000351588900020Q3Q2