Golmankhaneh, Alireza K.Baleanu, DumitruYang, Xiao-JunBaleanu, D.Matematik2017-04-192017-04-192015Golmankhaneh, A.K., Yang, X.J., Baleanu, D. (2015). Einstein field equations within local fractional calculus. Romanian Journal of Physics, 60(1-2), 22-31.1221-146XYang, Xiao-Jun/0000-0003-0009-4599In this paper, we introduce the local fractional Christoffel index symbols of the first and second kind. The divergence of a local fractional contravariant vector and the curl of local fractional covariant vector are defined. The fractional intrinsic derivative is given. The local fractional Riemann-Christoffel and Ricci tensors are obtained. Finally, the Einstein tensor and Einstein field are generalized by involving the fractional derivatives. Illustrative examples are presented.eninfo:eu-repo/semantics/closedAccessLocal Fractional Christoffel IndexLocal Fractional Riemann-Christoffel TensorLocal Fractional Ricci TensorLocal Fractional Einstein FieldEinstein field equations within local fractional calculusEinstein Field Equations Within Local Fractional CalculusArticle601-222312-s2.0-84923224361WOS:000351190000003Q3Q3